
© 2022 SignalCore, Inc. All Rights Reserved www.signalcore.com

Datasheet
SC803A

100/200 MHz Reference Source

 Rev 1.0

http://www.signalcore.com/

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

Table of Contents
1 Definition of Terms .. 4

2 Description .. 5

3 Specifications ... 6

3.1 Spectral Specifications .. 6

3.2 Amplitude Specifications .. 6

3.3 Electrical Specifications... 9

3.4 40 Pin Connector Description ... 10

3.5 Mechanical Data ... 11

3.6 Product Evaluation ... 12

3.7 Ordering Information.. 12

3.7.1 SC803A Module Kit Contents... 12

4 Theory and Operation .. 13

4.1 Reference Signal Generation... 13

4.2 Communication Interfaces .. 14

4.2.1 SPI Interface ... 14

4.2.2 UART Interface.. 14

4.2.3 USB Interface .. 14

5 Device Registers ... 15

5.1 Register 0x01 INITIALIZE ... 15

5.2 Register 0x10 REFOUT_FREQUENCY.. 15

5.3 Register 0x11 REFIN_FREQUENCY (4 Bytes) ... 15

5.4 Register 0x12 CONFIG ... 15

5.5 Register 0x13 ADJUST_OCXO .. 16

5.6 Register 0x14 SERIAL_CONFIG .. 16

5.7 Register 0x15 SET_DEFAULT ... 17

5.8 Register 0x20 GET_DEVICE_PARAM .. 17

5.9 Register 0x21 DEVICE_INFO .. 18

5.10 Register 0x22 DEVICE_TEMPERATURE... 19

5.11 Register 0x23 OCXO DAC VALUE ... 19

5.12 Register 0x25 SERIAL_OUT_BUFFER .. 19

6 Serial Peripheral Interface .. 20

6.1 Writing to Configure via SPI .. 21

©2022 | SC803A Datasheet Rev 1.0

3 Definition of Terms

6.2 Reading via SPI ... 21

7 Universal Asynchronous Receive-Transmit (UART) Interface ... 22

7.1 UART Data Transfer .. 22

8 USB Interface ... 24

8.1 USB Configuration .. 24

8.2 Writing the Device Registers ... 24

8.3 Reading the Device Registers Directly ... 25

8.4 USB Software API.. 25

9 Software API .. 26

9.1 API Description ... 26

9.2 Code Examples ... 31

9.3 LabVIEW Support.. 31

10 Revision Table .. 32

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

1 Definition of Terms
The following terms are used throughout this datasheet to define specific conditions:

Specification (spec) Defines expected statistical performance within specified

parameters which account for measurement uncertainties and

changes in performance due to environmental conditions.

Protected by warranty.

Typical Data (typ) Defines the expected performance of an average unit without

specified parameters. Not protected by warranty.

Nominal Values (nom) Defines the average performance of a representative value for a

given parameter. Not protected by warranty.

Measured Values (meas.) Defines the expected product performance from the measured

results gained from individual samples.

Specifications are subject to change without notice. For the most recent product specifications, visit

www.signalcore.com.

https://www.signalcore.com/index.html

©2022 | SC803A Datasheet Rev 1.0

5 Description

2 Description
The SC803A is part of the nanoSynth® family from our nanoCircuits® line of products. It is a SMT

device designed for PCB applications that required a reference source or frequency synthesizer with
low phase noise and OCXO grade stability. Its internal OCXO maintains frequency stability of better
than 20 ppb over the operational temperature range. The typical measured phase noise at 10 kHz
offset from a 200 MHz carrier is less than -160 dBc/Hz. Communicating to the device is flexible as it
has 3 built-in communications interfaces: USB, SPI, and UART (RS232).

MCU

SC

K
M

O
SI

M

ISO
C

S_b

PIN_CTRL

U
TX

U
R

X

USB +
USB -

USB EN

LOCK
100M/200M SEL

R
ESET

EXT LCK EN

10 M OCXO
PLL

REF IN

100/200M
REF OUT

3.3
V

_R
EF

5.0
V

_R
EF

V
_M

C
U

FLA
SH

_E
_b

EXT DIRECT LCK

U
A

R
T C

FG

2

100M
VCXO

PLL

10M

REF OUT
10

Figure 1. SC803A Functional Block Diagram

Product Features

- Selectable 100 MHz or 200 MHz out

- Locks to external 5/10/20/50/100
MHz

- OCXO disciplined

- Phase Noise < -162 dBc/Hz at 10 kHz

offset at 200 MHz

- Rugged and miniature 2.00” x 1.25” x

0.35” SMT package

- USB, UART and SPI

Applications

- Test and measurement equipment
- Wireless communication equipment
- PLO replacement
- Reference signal clean-up
- Quantum computing
- Network equipment

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

3 Specifications

3.1 Spectral Specifications

Reference Output 10/100/200 MHz

Stability
 Ambient (0 OC to +70 OC) ± 20 ppb
 Aging
 Daily ± 3 ppb
 Yearly ± 0.6 ppm
 10 years ± 3 ppm

Phase Noise (dBc/Hz) typ. Add 3 dB for max.
Offset 10 MHz 100 MHz 200 MHz
10 Hz -100 -80 -74
100 Hz -136 -120 -114
1 kHz -158 -147 -141
10 kHz -160 -166 -160
100 kHz -160 -170 -164
1 MHz -160 -172 -166

Harmonics & Spurs
 2nd Harmonics < -15 dBc typical
 Sub Harmonics (200 MHz) < -70 dBc typical
 Spurs < -70 dBc typical

Reference Input 5/10/20/50/100 MHz

3.2 Amplitude Specifications

Reference Output
 10 MHz +5 dBm typical
 100 MHz +5 dBm typical
 200 MHz +5 dBm typical

Reference Input
 Amplitude
 Min 0 dBm
 Typical +3 dBm
 Max +7 dBm
 Frequency accuracy < ± 2 ppm

©2022 | SC803A Datasheet Rev 1.0

9 Specifications

3.3 Electrical Specifications

Voltage and Current
 Parameter Minimum Typical Maximum Unit

 V_REF3.3 3.15 3.3 3.5 V

 V_MCU 3.2 3.3 3.4 V
 V_REF5.0 4.95 5.0 5.3 V

 I_REF3.3 - - 320 mA

 I_MCU - - 60 mA
 I_REF5.0 - - 180 mA

 Power dissipation 1.8 1.9 2.2 W

 Low input logic -0.3 - 0.8 V
 High input logic 2.0 - 3.6 V

 Low output logic 0.0 - 0.4 V

 High output logic 2.9 - 3.3 V

Absolute Maximum Ratings
 Continuous Power Dissipation 2.5 W
 Storage Temperature -20 to 90 0C
 Operating Temperature 0 to +75 0C

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

3.4 40 Pin Connector Description

1 Pins determine the powerup state. Pins can be overridden via software and powerup status is retrieved from
stored default values.

Pin Number Function Description

6,7,15,18,27,34,40 GND Must be connected to RF or DC ground. It is

important to place as many ground vias as

possible in or around these ground pads to

improve signal performance as well as thermal

conduction from the device to the board.

2,4,20,22 NC Not connected

8,10,12,14,16 5V_REF Supply for reference circuit

24,26,28,30,32 3.3V_REF Supply for reference circuit

36,38 V_MCU Supply for the microprocessor and digital

interface

1 USB_N USB negative line

3 USB_P USB positive line

5 USB_EN Pull high to enable USB

9 UTX UART Transmit

11 URX UART Receive

13 FLASH_ERASE This pin must always be pulled low on power up

for the device to operate. If this pin is pulled high

and reset (pin 17) is toggled low, the device flash

memory will be erased. When memory is erased,

it will require re-flashing with firmware.

17 RESET̅̅ ̅̅ ̅̅ ̅̅ ̅ Hardware reset

19 200M_SEL Pull high to select 200 MHz output.1

21 LCK_STATUS Phase-lock Status

23 LOCK_ENABLE Enable locking to external source1

25 DIRECT_LOCK Locks VCXO directly to external reference, bypass

internal OCXO. Only if reference is 10 MHz.1

29 REF_IN_SEL Selects input reference for 10 MHz or 100MHz.1

31 SERIAL_CTRL Selects the UART baud rate.

33 CS̅̅ ̅ SPI device/chip select

35 MOSI SPI receive

37 MISO SPI transmit

39 SCK SPI clock

©2022 | SC803A Datasheet Rev 1.0

11 Specifications

3.5 Mechanical Data

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

3.6 Product Evaluation

A full development board is available from SignalCore to evaluate the SC803A together with either

the SC801A or SC802A. Following this link for more information:

https://www.signalcore.com/nano_hb2.html#eval

3.7 Ordering Information

SC803A nanoSynth SMT Reference Module Kit 7100050-01

SC801A nanoSynth-HB Evaluation Development Kit 7100152-01

SC802A nanoSynth-HB Evaluation Development Kit 7100153-01

3.7.1 SC803A Module Kit Contents

• SC803A Module 1

• Software in USB drive 1

https://www.signalcore.com/nano_hb2.html#eval

©2022 | SC803A Datasheet Rev 1.0

13 Theory and Operation

4 Theory and Operation
The SC803A is a very small and high performing surface mount reference synthesizer with easy to

program register-level control. Being small and fully integrated, this source is the ideal solution for

board-level designs that require a frequency stable reference signal with very low phase noise.

Figure 2 shows the block diagram of the device, and the following sub-sections provide details of its

operation.

Figure 2. Block Diagram of the SC803A

4.1 Reference Signal Generation

The SC803A synthesizes 10MHz, 100MHz and 200 MHz output signals from its base reference, a 10

MHz OCXO. The primary oscillator is an extremely low phase noise 100 MHz VCXO whose signal is

frequency doubled and filtered to produce a 200 MHz MHz signal. A switch selects either the 100

MHz or the 200 MHz signal as the output. The VCXO is also frequency divided to obtain a 10 MHz

signal as a secondary reference output.

To achieve better stability, the VCXO is continuously phase-locked to the internal OCXO. The OCXO

temperature stability is better than the VCXO by a magnitude order of 1000. In applications where

a system reference clock is present externally, the internal OCXO can lock to it if external locking is

enabled. While the VCXO is generally locked to the internal OCXO, it can also directly lock to the

external reference clock provided that the clock frequency is 10 MHz. The choice to phase-lock the

VCXO directly to an external reference would depend on the quality of the phase noise of the clock.

If the phase noise of the external system clock is higher than the OCXO, especially in the regions

less than 100 Hz offset, it is not recommended to directly lock.

Upon powerup of the device, the input reference source frequency is determined by either pin 29,

or if this pin is overridden by software, it can be set to the stored default value. If pin 29 is set low

the device assumes a clock of 10 MHz, and a high for 100 MHz. If this pin is overridden, then the

device can be programmed to the frequencies list in the following table.

MCU

SC

K
M

O
SI

M

ISO
C

S_b

PIN_CTRL

U
TX

U
R

X

USB +
USB -

USB EN

LOCK
100M/200M SEL

R
ESET

EXT LCK EN

10 M OCXO
PLL

REF IN

100/200M
REF OUT

3.3
V

_R
EF

5.0
V

_R
EF

V
_M

C
U

FLA
SH

_E
_b

EXT DIRECT LCK

U
A

R
T C

FG

2

100M
VCXO

PLL

10M
REF OUT

10

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

Table 1 Reference Input indices and corresponding frequencies

4.2 Communication Interfaces

The device has 3 communication interfaces, USB, UART, and SPI and are all enabled by default. The

USB can be disabled by pulling the USN_EN pin low. It is also used for firmware update, so it is

strongly recommended to wire its interface pins to a connector or header pin even though it may

not be used.

4.2.1 SPI Interface

PINS 33, 35, 37, and 39 are configured as an SPI interface that corresponds to CS, MOSI, MISO,

and SCK respectively. Detailed SPI read and write operations are discussed in detail in section 6.

4.2.2 UART Interface

Pins 9 and 11 are configured as a 2 wire UART serial interface and they correspond to UTXD and

URXD respectively, which are the transmit and receive lines. Detailed UART read and write

operations are discussed in detail in the Universal Asynchronous Receive-Transmit (UART)

Interface section.

4.2.3 USB Interface

The device has a built-in USB controller configured in client mode. The two wires USB- and USB+

can be routed directly to a USB connector or an embedded host port. The transfer types

supported by the device are control and bulk. The USB port can be turned off by grounding or

pulling low pin 5. More information on the use of the USB interface is provided in the USB

Interface section.

Index Frequency

0 10 MHz
1 100 MHz
2 5 MHz
3 20 MHz
4 50 MHz

©2022 | SC803A Datasheet Rev 1.0

15 Device Registers

5 Device Registers
Communication to the SC803A is performed by writing to and reading from its set of control and

query registers, respectively. The control registers are used to set/configure the device, while the

query registers, register 0x20 to 0x24, request the device to perform an operation and return its

results. The tables below list the device registers and their operation. All registers are 8 bytes long.

The register address is the first byte, followed by 7 bytes of data.

5.1 Register 0x01 INITIALIZE

Bits Type Name Width Description

[0] WO Initialize 1

0 = Device reprograms all components to the
current state

1 = Device resets to power on state

[55:1] WO 55 Zeros

5.2 Register 0x10 REFOUT_FREQUENCY

Bits Type Name Width Description

[0] WO Frequency select 1 0 = 100 MHz, 1 = 200 MHz

[55:1] WO Frequency word 55 Set to zero

5.3 Register 0x11 REFIN_FREQUENCY (4 Bytes)

Bits Type Name Width Description

[1:0] WO Frequency select 3
0 = 10 MHz, 1 = 100 MHz, 2 = 5 MHz, 3 = 20 MHz,
4 = 50 MHz

[56:3] WO SIGN BIT 53 Set to zero

5.4 Register 0x12 CONFIG

Bits Type Name Width Description

[0] WO External Lock 1 Enable/Disable external lock

[1] WO Direct Lock 1
Enable/Disable direct locking to external
reference. Direct locking is only possible if the
input reference frequency is set to 10 MHz.

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

Bits Type Name Width Description

[2] WO Override HW pins 1

1 overrides hardware pin setting and uses the
current stored default setting on powerup. Pins
that are overridden are:

Ext Lock Enable

Direct Lock

Ref In Select

[56:3] WO Not used 53 Set to zeros

5.5 Register 0x13 ADJUST_OCXO

Bits Type Name Width Description

[10:0] WO 11-bit word 11
Adjust accuracy of the OCXO by this increment on
each call to the register

[11] WO Sign bit 1 1 = negative word value

[55:13] WO Unused 43 Set all bits to 0

5.6 Register 0x14 SERIAL_CONFIG

Bits Type Name Width Description

[3:0] WO Baud rate index 4

Values set here are only valid if PIN 31
(SERIAL_CNTRL) is pull high.

0 = 57600

1 = 115200

2 = 19200

3 = 38400

4 = 230400

5 = 460800

6 = 921600

7 = 1843200

[55:1] WO Reserved 55 Set all bits to 0

©2022 | SC803A Datasheet Rev 1.0

17 Device Registers

5.7 Register 0x15 SET_DEFAULT

Bits Type Name Width Description

[55:0] WO Value 56

Set all to 0. Calling this register will save the
current state of the device as default. This
register needs to be called if either or all the
parameters for registers 0x10 to 0x13 are to be
set as default.

5.8 Register 0x20 GET_DEVICE_PARAM

Bits Type Name Width Description

[1:0] WO
Get Device
Parameters

2

Writing this register will place the requested
contents into the output buffer. In the case of
USB and RS232, all 8 bytes are sent back and need
to be read to clear host buffers. In the case of SPI,
a second query to the SERIAL_OUT_BUFFER
(0x25) register is required to transfer its contents
and clear the output buffer.

0 = Device status

1 = ref input and output frequency indices

2 = OCXO adjust value

[55:2] WO Reserved 54 Zero

[63:0] RO Return Data 64

Valid data for the requested parameter:

0 Device status

[0] lock enable

[1] direct lock

[2] ext. ref detected

[3] ocxo locked

[4] vcxo locked

[5] hw pin override

[6] uart pin state

[11:8] uart baudrate

[13:12] reserved

1 Ref frequency indices

[3:0] ref in index

[7:4] ref out index

2 Last OCXO adjust value

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

Bits Type Name Width Description

[11:0] value

[12] sign

5.9 Register 0x21 DEVICE_INFO

Bits Type Name Width Description

[1:0] WO Device Info 2

Writing this register will place the requested
contents into the output buffer. Contents are
immediately available for USB read. The contents
effectively occupy four bytes. In the case of SPI,
contents are transferred to the serial output
buffer, so a second query to the
SERIAL_OUT_BUFFER register is required to
transfer its contents and also to clear the output
buffer.

0 = Obtain the product serial number, model
option, and model number

1 = Obtain the hardware and firmware version

2 = Obtain the manufacture date

[55:2] WO Reserved 6

[63:0] RO
Data for
Parameter 0

64

Data format for the serial number, model option,
and model number:

[31:0] Product serial number. Convert to string of
its hexadecimal presentation.

[39:32] Model option. Custom options.

[47:40] Model number. 0 = SC803A

[55:48] Interface code. Default 7. USB, RS232, SPI
available.

[63:0] RO
Data for
Parameter 1

64

Data format for the firmware and hardware
versions:

[7:0] FW fix

[15:8] FW minor

[23:16] FW major

[39:32] HW fix

[47:40] HW minor

[55:48] HW major

[63:0] RO
Data for
parameter 2

64 Date of manufacture.

©2022 | SC803A Datasheet Rev 1.0

19 Device Registers

Bits Type Name Width Description

[7:0] day

[15:8] month

[23:16] year (add 2000)

5.10 Register 0x22 DEVICE_TEMPERATURE

Bits Type Name Width Description

[55:0] WO 64 Set all bits to 0

[63:0] RO Data in 63

[15:0] = data

Calculate the temperature as follows:

 if (data & 0x2000)

 temp = (float)(((data&0x1FFF)-0x1FFF)/32.0);

 else

 temp = (float)((data&0x1FFF)/32.0);

[63:16] invalid

5.11 Register 0x23 OCXO DAC VALUE

Bits Type Name Width Description

[55:0] WO 64 Set all bits to 0

[63:0] RO Data in 63

[15:0] = OCXO DAC value. Value controls the
accuracy of the OCXO.

[63:16] invalid

5.12 Register 0x25 SERIAL_OUT_BUFFER

Bits Type Name Width Description

[55:0] WO Serial Out Buffer 56
Set all bits to 0. Use of this register is only
available for the SPI interface.

[63:0] RO Request Data 64
The data clocked back are the contents requested
by the 0x20 to 0x23 registers.

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

6 Serial Peripheral Interface
The SPI interface is implemented using 8-bit length physical buffers for both the input and output;

hence they need to be read and cleared before consecutive bytes can be transferred to and from

them. The process of clearing the SPI buffer and decisively moving it into the appropriate register

takes CPU time, so a time delay is required between consecutive bytes written to or read from the

device by the host. The chip-select pin (𝐶𝑆̅̅̅̅) must be asserted low before data is clocked in or out of

the product. Pin 𝐶𝑆̅̅̅̅ must be asserted for the entire duration of a register transfer.

Once a full transfer has been received, the device will proceed to process the command and de-

assert low the SRDY pin. The status of this pin may be monitored by the host because when it is de-

asserted low, the device will ignore any incoming data. The device SPI is ready when the previous

command is fully processed and the SRDY pin is re-asserted high. It is important that the host either

monitors the SRDY pin or waits for 500 µs between register writes.

Figure 3. Clock Phase

Register writes are accomplished in a single write operation; their lengths are 8 bytes with the first

byte being the register address, followed by the data associated with that register. All data

transferred to and from the device is clocked on the falling edge of the clock as shown in Figure 3.

The (𝐶𝑆̅̅̅̅) pin must be asserted low for a minimum period of 1 μs (Ts, see Figure 4) before data is

clocked in, and must remain low for the entire register write. The minimum clock recommended

clock rate is 100 kHz and maximum 5.0 MHz (Tc = 0.2 μs). However, if the external SPI signals do

not have sufficient integrity due to trace issues, then the rate should be lowered.

Figure 4. SPI Timing

As mentioned above, the SPI architecture limits the byte rate since after every byte transfer the

input and output SPI buffers need to be cleared and loaded respectively by the device SPI engine.

Data is transferred bidirectionally between the buffers and the internal registers. The time required

to perform this task is indicated by TB, which is the time interval between the end of one byte

transfer and the beginning of another. The recommended minimum time delay for TB is 2 μs. It is

important that all 8 bytes are transferred, because once the first byte (MSB) containing the device

MSB

CS

MISO

MOSI

CLK

MSB

LSB

LSB

TS TBTC

8 Bit Command/ Reg. Address Byte N (MSB) Byte N-1 (LSB)

CLK

DATA

CS

©2022 | SC803A Datasheet Rev 1.0

21 Serial Peripheral Interface

register is received, the device will wait for the rest of the 7 bytes; If an insufficient number of

bytes are clocked in for the register, it could cause the device to hang. To clear the hung condition,

the device will need an external hard reset. The time required to process a register is dependent on

the command itself. Measured times for command completions are between 40 μs to 300 μs after

reception.

6.1 Writing to Configure via SPI

The MSB byte is the command register address as noted in the Device Registers section. The

subsequent bytes contain the data associated with the register. As data from the host is being

transferred to the device via the MOSI line, data present on its SPI output buffer is simultaneously

transferred back, MSB first, via the MISO line. The data return is invalid for most transfers except

for those registers querying for data from the device. See the Reading via SPI section below for

more information on retrieving data from the device. Figure 5 shows the contents of setting the

device reference output frequency (register 0x10) to 200 MHz. The value written is 0x01 so the

register is written with 0x1000000000000001. The Device Registers section provides information

on the number of data bytes and their contents for an associated register.

Figure 5. Single transfer buffer to change the frequency.

6.2 Reading via SPI

Data is simultaneously read back during an SPI transfer cycle. Requested data from a prior

command is available on the device SPI output buffers, and these are transferred back to the user

host via the MISO pin. To obtain valid requested data requires querying the Register 0x25

SERIAL_OUT_BUFFER, which requires 8 bytes of clock cycles: 1 byte for the device register (0x25)

and 7 empty bytes (MOSI) to clock out the returned data (MISO). An example of reading the device

frequency back by first writing the GET_DEVICE_PARAM register with 0x01 (0x2000000000000001)

and then followed by writing the Register 0x25 SERIAL_OUT_BUFFER (0x2500000000000000)

register, is shown in Figure 6.

Figure 6. Reading queried data

0x10 0x00 0x000x00 0x00 0X00 0x00 0x01

0x00 0x00 0x000x00 0x00 0x00 0x00 0x00

CLK

MOSI

MISO

CS_b

0x20 0x00 0x000x00 0x00 0X00 0x00 0x01

0x00 0x00 0x000x00 0x00 0x00 0x00 0x00

CLK

MOSI

MISO

CS_b

0x25 0x00 0x000x00 0x00 0X00 0x00 0x00

0x00 0x00 0x000x0D 0x00 0x00 0x00 0x10

Write 0x20 with 0x01 to request for frequency indices Write 0x25 to clock out the data

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

7 Universal Asynchronous Receive-Transmit (UART) Interface
The UART is configured as a 2-wire serial whose logic level is 3.3V CMOS, which allows it to interface

directly to a micro-controller or a minicomputer with UART/USART built in. An RS232 transceiver

chip, like the MAX3232, is required to properly shift the CMOS levels for RS232 (COM) interfaces

such as those of a PC. However, many of these transceivers have baud rates less than 1 MHz, and

that may limit the UART maximum baud rate.

The UART baud rate is set to a default of 57600 when the UART_CFG pin is pulled low. However,

when the line is pulled high it will select the rate that was set programmatically. See Register 0x14

SERIAL_CONFIG for the available rates. The device must be reset or restarted for the newly

programmed baud rate to take effect. The factory set default rate when the UART_CFG pin is pulled

high is 115200.

Table 2. UART Baud Rate

Table 3. UART Data Format

7.1 UART Data Transfer

Writing data to the device consists of 8 bytes; however, only writing query registers will return data

in 8 bytes. The query registers are 0x20 to 0x23. The other registers (configuration registers) will

return 1 byte, the acknowledge byte, which has a value of 0x01 to indicate the configuration was

carried out successfully. This value must be read to clear the buffer for the next returned data. The

data format for each register is provided in the Device Registers section. As an example, setting the

device reference output frequency to 200 MHz involves the following steps:

1. First, send the value in 8 bytes of data with the first byte being the RF_FREQUENCY register

byte, [0x10] [0x00] [0x0D] [0x00] [0x00] [0x00] [0x00] [0x01].

UART_CFG PIN BAUD RATE

L 57600

H Software settable, factory default is 115200

Property Value

Baud Rate Table 2

Data bits 8

Parity None

Stop Bits 1

Flow Control None

©2022 | SC803A Datasheet Rev 1.0

23 Universal Asynchronous Receive-Transmit (UART) Interface

2. Second, poll to read the acknowledge byte [0x01] with a timeout period of 1 second at

most. Reading this byte clears out the receive buffer to avoid errors when querying for

data.

To query back information, such as the current rf frequency, first write the GET_DEVICE_PARAM

register with the value 0x01, which requests for the frequency, followed by polling to read back 8

bytes of data containing the frequency value. The steps are shown here:

1. Write the 8 bytes [0x20] [0x00] [0x00] [0x00] [0x00] [0x00] [0x00] [0x01].

2. Poll to read 8 bytes back that contain the value, which may look like [0x00] [0x00] [0x0D]

[0x00] [0x00] [0x00] [0x00] [0x10]. The format of the returned data is detailed in the

register description.

If an RS232 transceiver is connected to the device, it can be controlled via a host PC COM port.

There are a few of ways to perform the communication:

1. Use a HyperTerminal like Realterm, one that can transfer in hexadecimal instead of ASCII

characters.

2. Use the provided Software Front Panel.

3. Write a custom application using the software API.

https://realterm.sourceforge.io/

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

8 USB Interface
The SC803A has a full speed USB interface that works in parallel with the SPI/UART interface. Both

interfaces are active at the same time if the USB interface is available for the device and the USB_EN

pin is pulled high. Although the USB interface may not be used as a communications interface, it is

recommended to be wired up as a port used for firmware updates.

8.1 USB Configuration

The device USB interface is USB 2.0 compliant running at Full Speed, capable of 12 Mbits per

second transfer rates. The interface supports three transfer or endpoint types:

• Control Transfer

• Bulk Transfer

The endpoint addresses are provided in the C-language header file and are listed below:

The buffer lengths are 16 bytes for all endpoint types. The user should not exceed this length, or

the device may not respond correctly. This information is provided to aid custom driver

development on host platforms other than those supported by SignalCore.

8.2 Writing the Device Registers

Device registers are 8 bytes in length. The most significant byte (MSB) is the command register

address that specifies how the device should handle the subsequent configuration data. The

configuration data likewise needs to be ordered MSB first, that is, the higher bits are transmitted

first. To ensure that a register instruction has been fully executed by the device, read all 8 bytes

back from the device. Data read back for configuration registers are invalid.

// Define SignalCore USB Endpoints

#define SCI_ENDPOINT_IN_BULK 0x81

#define SCI_ENDPOINT_OUT_BULK 0x02

// Define for Control Endpoints

#define USB_ENDPOINT_IN 0x80

#define USB_ENDPOINT_OUT 0x00

#define USB_TYPE_VENDOR (0x02 << 5)

#define USB_RECIP_INTERFACE 0x01

©2022 | SC803A Datasheet Rev 1.0

25 USB Interface

8.3 Reading the Device Registers Directly

Valid data is only available to be read back after writing one of the query registers such as 0x20,

0x21, and 0x23. As soon as one of these registers is written, data is available on the device to be

read back. When reading the device, the MSB is returned as the first byte for a total of eight bytes.

In many cases not all eight bytes carry valid data, however, all eight bytes must be read in since

valid data begins at the LSB. The format of the returned data is detailed in the register description.

8.4 USB Software API

A software API is provided to control the device via USB in Windows and Linux, see next section.

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

9 Software API
The SC803A application programming interface (API) software for both USB and RS232 (requires a

RS232 transceiver) provided by SignalCore is available for WindowsTM. The USB portion of the API is

also available for the LinuxTM operating system. Source code for both platforms is available upon

request by emailing support@signalcore.com. Programming platforms such as C/C++, C#, and

LabView are supported. Python assistance is also available for those who want to port the API to that

platform. The API functions are summarized in the table below and their function descriptions are

provided in the API Description section.

9.1 API Description

The API functions are contained in the nanowb.dll for WindowsTM operating systems, or

libnanowb.so.1.0 for LinuxTM operating systems. For other operating systems or embedded

systems, source code is available and can be requested by emailing support@signalcore.com.

Information provided below represents the contents of the C/C++ header file, nanowb.h, but are

expanded here, and listed for convenience. The integer returned for all functions holds the error

identity, which is defined in the sci_errors.h file.

Function Description

nanowb_SearchDevices Finds all the SC803A Devices connected to the host

nanowb_SearchDevices_LV Same as previous, but interfaces well with LabView and C#.

nanowb_OpenDevice Opens a session for the device and returns the handle

nanowb_CloseDevice Closes a session for the device and frees the handle

nanowb_RegWrite Write directly to the device configuration registers

nanowb_RegRead Read directly from the device query registers

nanowb_InitDevice Initialize the device to power up state

nanowb_SetRefOutFreq Sets the reference output frequency

nanowb_SetRefInFreq Sets the reference input frequency

nanowb_SetRefConfig Set up the reference behavior

nanowb_SetSerialConfig Sets the UART baud rate

nanowb_SetRefDacAdjust Configures the sweep/list behavior

nanowb_SetAsDefault Stores the current configuration as default on reset or power-up

nanowb_GetDeviceStatus Gets the device status, such as lock status

nanowb_GetDeviceInfo Gets the device information

nanowb_GetRfParams Reads the current frequency, sweep/list frequency parameters

nanowb_GetTemperature Gets the device operating temperature

nanowb_GetRefDacValue Reads the list points from list buffer in RAM

mailto:support@signalcore.com
mailto:support@signalcore.com

©2022 | SC803A Datasheet Rev 1.0

27 Software API

Function: nanowb_SearchDevices

Definition: int nanowb_SearchDevices(int interface, char **serial_NumberList,

 int numberDevices)

Input: int interface 0 = USB, 1 = RS232

Output: char **serialNumberList 2-D array pointer list

 int *numberDevices The number of devices found

Description: nanowb_SearchDevices() searches for SignalCore SC803A devices that are
connected to the host computer and returns the number of devices found. It also
populates the 2D char array with their serial numbers. The user can use this
information to open a specific device(s) based on its unique serial number. See the
nanowb_OpenDevice function on how to open a device.

Function: nanowb_SearchDevices_LV

Definition: int nanowb_SearchDevices_LV(int interface, char *serial_NumberList,

 int numberDevices)

Input: int interface 0 = USB, 1 = RS232

Output: char **serialNumberList 1D array list of concatenated serial numbers, 8 char ea.

 int *numberDevices The number of devices found

Description: nanowb_SearchDevices_LV() searches for SignalCore SC803A devices that are
connected to the host computer and returns the number of devices found. It also
populates the 1D character (8 bit/char) array with their serial numbers
concatenated. Split the array up in 8 characters (8 bytes). The user can use this
information to open a specific device(s) based on its unique serial number. See the
nanowb_OpenDevice function on how to open a device.

Function: nanowb_OpenDevice

Definition: int nanowb_OpenDevice(int interface, char *devSerialNum,

uint8_t baudRateIndex, PHANDLE deviceHandle)

Input: int interface 0 = USB, 1 = RS232

 char *devSerialNum The serial number string of 8 characters

 uint8_t baudRateIndex RS232: 0 = 57600, 1 = 115200

 Set to 0 for USB interface.

Output: PHANDLE deviceHandle Device handle

Description: nanowb_OpenDevice() opens the device and returns a handle for access.

Function: nanowb_CloseDevice

Definition: int nanowb_CloseDevice(HANDLE deviceHandle)

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

Input: HANDLE deviceHandle Handle to the device

Output:

Description: nanowb_CloseDevice() closes the device associated with the device handle.

Example Code: Exercise the functions that open and close the device.

// Includes

#include “nanowb.h”

// Declaring
#define MAXDEVICES 50
HANDLE devHandle; //device handle, HANDLE is defined as void*

int numOfDevices; // the number of device types found

char **deviceList; // 2D to hold serial numbers of the devices found
int status; // status reporting of functions

deviceList = (char**)malloc(sizeof(char*)*MAXDEVICES); // 50 serial numbers to search

for (i=0;i<MAXDEVICES; i++) // allocate 8 char for each device
 deviceList[i] = (char*)malloc(sizeof(char)*SCI_SN_LENGTH); // SCI SN has 8 char

status = nanowb_SearchDevices(0, deviceList, &numOfDevices); //searches for SCI for USB

device type

if (numOfDevices == 0)

{

 printf("No available signal core devices found or cannot obtain serial numbers\n");

 for(i = 0; i<MAXDEVICES;i++) free(deviceList[i]);

 free(deviceList);

 return 1;

}

printf("\n There are %d SignalCore %s NANOWB devices found. \n \n", //

numOfDevices, SCI_PRODUCT_NAME);

 i = 0;

 while (i < numOfDevices)

 {
 printf(" Device %d has Serial Number: %s \n", i+1, deviceList[i]);

 i++;

 }

// Open first device found, deviceList[0], with USB interface and baud rate = 0;

Status = nanowb_OpenDevice(0, deviceList[0], 0, &devHandle);
// Free memory

 for(i = 0; i<MAXDEVICES;i++)
free(deviceList[i]);

free(deviceList); // Done with the deviceList
 //
// Do something with the device
//

status = nanowb_CloseDevice(devHandle); // Close the device

©2022 | SC803A Datasheet Rev 1.0

29 Software API

Function: nanowb_RegWrite

Definition: int nanowb_RegWrite(HANDLE deviceHandle, uint8_t regByte,

uint64_t instructWord)

Input: HANDLE deviceHandle Handle to the device

 uint8_t regByte Register address

 uint64_t instructWord Data associated with the register

Output:

Description: nanowb_RegWrite() writes data to the register address.

Function: nanowb_RegRead

Definition: int nanowb_RegRead(HANDLE deviceHandle, uint8_t regByte,

uint64_t instructWord, uint64_t *receivedWord)

Input: HANDLE deviceHandle Handle to the device

 uint8_t regByte Register address

 uint64_t instructWord Instruct data associated with the register

Output: uint64_t receivedWord Received data associated with the register

Description: nanowb_RegRead() writes data to the register address and then receives back.

Function: nanowb_InitDevice

Definition: int nanowb_InitDevice(HANDLE deviceHandle, uint8_t mode)

Input: HANDLE deviceHandle Handle to the device

 uint8_t mode Current (0) or start up state (1)

Output:

Description: nanowb_InitDevice(); 0 makes the device reprogram its components to the current
state; 1 resets the device to powerup state.

Function: nanowb_SetRefOutFreq

Definition: int nanowb_SetFrequency(HANDLE deviceHandle, uint32_t refOutFreqIndex)

Input: HANDLE deviceHandle Handle to the device

 uint32_t refOutFreqIndex 0 = 100 MHz, 1 = 200 MHz

Output:

Description: nanowb_SetRefOutFreq() the output reference frequency to either 100 MHz or
200 MHz.

Function: nanowb_SetRefInFreq

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

Definition: int nanowb_SetRefInFreq(HANDLE deviceHandle, uint32_t refInFreqIndex)

Input: HANDLE deviceHandle Handle to the device

 uint32_t refInFreqIndex 0 = 10 MHz, 1 = 100 MHz, 2 = 5 MHz,
 3 = 20 MHz, 4 = 100MHz

Output:

Description: nanowb_SetRefInFreq() set the input reference frequency if hardware pin override
is enabled in software.

Function: nanowb_SetSerialConfig

Definition: int nanowb_SetSerialConfig(HANDLE deviceHandle, uint8_t reserved, uint8_t
uartBaudrateIndex)

Input: HANDLE deviceHandle Handle to the device

 uint8_t uartBaudrateIndex Indexes have corresponding rate, see register 0x14

Output:

Description: nanowb_SetSerialConfig() sets up the UART baud rate, when the SERIAL_CONF
hardware pin 31 is pulled high.

Function: nanowb_SetRefDacAdjust

Definition: int nanowb_SetRefDacAdjust(HANDLE deviceHandle, int16_t adcAdjustValue)

Input: HANDLE deviceHandle Handle to the device

 uint8_t adcAdjustValue Signed value to be added to the DAC value

Output:

Description: nanowb_SetRefDacAdjust() will adjust the current DAC value by the amount
written to the device via this function.

Function: nanowb_SetAsDefault

Definition: int nanowb_SetAsDefault(HANDLE deviceHandle)

Input: HANDLE deviceHandle Handle to the device

Output:

Description: nanowb_SetAsDefault() stores the current configuration into EEPROM memory
and is used as the default state upon reset or power up.

Function: nanowb_GetDeviceStatus

Definition: int nanowb_GetDeviceStatus(HANDLE deviceHandle, deviceStatus_t
*deviceStatus)

Input: HANDLE deviceHandle Handle to the device

Output: deviceStatus_t *deviceStatus Status of the device

©2022 | SC803A Datasheet Rev 1.0

31 Software API

Description: nanowb_GetDeviceStatus() gets the current device status such as the PLL lock
status, output frequency, input reference frequency, lock configuration, etc.

Function: nanowb_GetDeviceInfo

Definition: int nanowb_GetDeviceInfo(HANDLE deviceHandle, deviceInfo_t *deviceInfo)

Input: HANDLE deviceHandle Handle to the device

Output: deviceInfo_t *deviceInfo Device info

Description: nanowb_GetDeviceInfo() gets the device information such as firmware version,
hardware version, model option, model number, and serial number.

Function: nanowb_GetRFParameters

Definition: int nanowb_GetFreqParams(HANDLE deviceHandle, rfParams_t *freqParams)

Input: HANDLE deviceHandle Handle to the device

Output: rfParams_t *freqParams Reference in and out indices

Description: nanowb_GetFreqParams() gets the device frequency parameters.

Function: nanowb_GetTemperature

Definition: int nanowb_GetTemperature(HANDLE deviceHandle, float *temperature)

Input: HANDLE deviceHandle Handle to the device

Output: float *temperature Device temperature

Description: nanowb_GetTemperature() gets the device temperature.

Function: nanowb_GetRefDacValue

Definition: int nanowb_GetRefDacValue(HANDLE deviceHandle, uint16_t dacValue)

Input: HANDLE deviceHandle Handle to the device

Output: uint16_t dacValue Current OCXO DAC control value

Description: nanowb_GetRefDacValue () obtains the current control value of the DAC.

9.2 Code Examples

Code examples in C/C++, and C# are provided to illustrate programming the device with the API.

Precompiled 32-bit and 64-bit executables are provided with the software package.

9.3 LabVIEW Support

A LabVIEW library is provided for development on that platform. The function VIs are wrappers

that call on the nanowb.dll C/C++ API. An executable software front panel (GUI) developed in

LabVIEW, along with its source code, is also included in the software package. VI function

description can be found by pressing keys [Ctrl] and [H] on the keyboard.

Rev 1.0 | SC803A Datasheet SignalCore, Inc.

 SC803A Datasheet

10 Revision Table

Revision Revision Date Description

1.0 7/24/2022 Initial Release

