
© 2020 SignalCore, Inc. All Rights Reserved

Programming Manual
SC5520A & SC5521A UHFS

160 MHz to 40 GHz CW Signal Source

Rev 1.2

www.signalcore.com

https://www.signalcore.com/index.html

©2021 | SC5520A and SC5521A Programming Manual Rev 1.2

1 Introduction

Table of Contents
1 Introduction .. 3

2 Driver Architecture .. 4

2.1 API Function Names and Call Type .. 4

2.2 Compiling Code in C/C++ ... 4

3 Identifying, Opening, and Closing Devices ... 5

3.1 Identifying Devices on the Host Computer .. 5

3.2 Opening and Connecting to a Device .. 6

3.3 Disconnecting from and Closing a Device .. 6

3.4 Opening Multiple Devices ... 6

3.5 Initialize Device .. 6

4 Configuration Functions .. 6

4.1 Setting the Frequency at the Output Port ... 7

4.2 Setting the Offset Phase .. 7

4.3 Setting the Synthesizer Mode ... 7

4.4 Setting the RF Mode .. 8

4.5 Setting the List Mode Configuration .. 8

4.6 Functions to setup List Mode .. 9

4.7 Setting the RF Amplitude ... 9

4.7.1 Setting the Power Level ... 9

4.7.2 Enabling the Output port... 9

4.7.3 Improving Calibrated Level .. 10

4.7.4 Disabling Automatic Leveling ... 10

4.7.5 Manual Amplitude Control .. 10

4.8 Configuring the Reference Clock ... 10

4.9 Saving the New Default State of the Device .. 10

5 Query Functions .. 11

5.1 Getting General Device Information ... 11

5.2 Getting the Device Status .. 11

5.3 Getting Other RF Parameters .. 11

5.4 Retrieving the Device Temperature .. 12

6 General Functions ... 12

6.1 Self-calibration of internal synthesizers .. 12

Rev 1.2 | SC5520A and SC5521A Programming Manual SignalCore, Inc.

2 SC5520A & SC5521A Programming Manual

6.2 Write Registers .. 12

6.3 Read Registers ... 13

7 Appendix ... 13

7.1 Definitions of types ... 13

Revision Table.. 16

©2021 | SC5520A and SC5521A Programming Manual Rev 1.2

3 Introduction

1 Introduction

The SC5520A and SC5521A are high performance signal generators (PSG) in a compact size. For the rest

of this document they will be addressed as UHFS unless explicitly called out by their product name. The

UHFS frequency range of its generated signal is from 160 MHz to 40 GHz. For more information about its

operation and hardware features, see the UHFS hardware manual.

This manual serves as a programming guide for those using the WindowsTM software API to program

these devices for the purpose of communicating with them through a host computer via the PXIe, USB or

RS232 bus. This document is structured into sections that describe the generic use of the product’s

functions, such as searching for available devices, opening a device, changing the frequency generation

parameters, setting power level, and putting the device into power standby.

This manual will explain each function in detail, including the purpose of the function and what its

parameters mean. Wherever applicable, snippets of C/C++ code are provided as examples on how to

properly use a function.

LabVIEWTM VIs provided have the same function names and parameters, so this manual may serve as a

reference for development in LabVIEWTM.

SignalCoreTM a registered trademark of SignalCore Incorporated, USA. SignalCoreTM is referred to as SignalCore in this manual.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States and/or other countries.

Trade names are trademarks of their respective owners.

© 2020 SignalCore Incorporated, Austin, TX USA

Rev 1.2 | SC5520A and SC5521A Programming Manual SignalCore, Inc.

4 SC5520A & SC5521A Programming Manual

2 Driver Architecture

The SC5520A is a PXIe (PCI express) based product, while the SC5521A is controlled through USB and

RS232. Although a single API called ‘sc5520a_uhfs’ is used for all three communication interfaces, each

method of communication requires a unique set of system or kernel level drivers.

The software architectures of the communication methods are illustrated in the following table. The left

column represents the PXIe software architecture, the middle column represents the USB software

architecture, and the right column represents the RS232 software architecture.

Table 1. Software Architectures

PXIe USB RS232

userapp.c

sc5520a_uhfs.h
sc5520a_uhfs.lib

userapp.c

sc5521a_uhfs.h
sc5521a_uhfs.lib

userapp.c

sc5521a_uhfs.h
sc5521a_uhfs.lib

sc5520a_uhfs.dll

scipcioxi.dll

sc5521a_uhfs.dll

libusb-1.0.dll

sc5521a_uhfs.dll

kernel32.dll

scipcioxi.sys winusb.sys serial.sys

At the highest level, where the user application resides, are the user code, header file(s) (.h), and library

file (.lib) for the device. The next level has the device API DLL and driver DLL (.dll), both called by the

applicated level. The last level is where the device system driver, or the kernel level driver, (.sys) resides.

2.1 API Function Names and Call Type

The function names for an interface are compounded words comprising of the product name first and

ending with the function description such as “sc5520a_uhfsSetFrequency”. In this document, all function

descriptions will leave out the product name description so that “SetFrequency” is used to represent all

interfaces. All functions are of call type __cdecl in WindowsTM.

2.2 Compiling Code in C/C++

All necessary header files must be included to compile user written applications. The following table

shows the necessary files.

SignalCore headers C/C++ headers

sci_uhfs_defs.h stdint.h

sci_uhfs_regs.h Windows.h

sc5520a_uhfs .h

sci_types.h

sci_errors.h

©2021 | SC5520A and SC5521A Programming Manual Rev 1.2

5 Identifying, Opening, and Closing Devices

All functions and their descriptions are found in the sc5520a_uhfs.h header file. This following

subsections provides further usage descriptions.

3 Identifying, Opening, and Closing Devices

The PSG PXIe and USB interfaces are identified by their unique serial numbers. This serial number is

passed to the OpenDevice() function as a string in order to open a connection to the device. The string

consists of 8 HEX format characters such as 100E4FC2. However, the RS232 interface is assumed to be

connected to a serial port of the host and is identified from the port name such as COM1, COM2, etc.

3.1 Identifying Devices on the Host Computer

The serial number is found on the product label, attached to the outer body of the product. However, if

the serial number cannot be found, there is a function to obtain the current devices connected to the

host computer. The SearchDevices() function scans the host computer for converter devices. If

found, a list containing its serial number is returned. The function is declared as;

SCISTATUS SearchDevices(sciCommInterface_t commInterface,

char **serialNumberList,

 int *numberDevices);

The first parameter commInterface is an enumeration of {PCI_INT, USB_INT, RS232_INT}, the

**serialNumberList is a 2D array format [number of devices, serial number length +

1], and *numberDevices is the number of devices detected and available for connection.

The following code snippet demonstrates how to prepare to call this function.

SCISTATUS status;

Sci_comm_interface_t comm_interface = USB_INT;

char **serialNumbers;

int i, nDevices;

serialNumbers = (char**)malloc(sizeof(char*)*MAXDEVICES);

 for (i=0;i<MAXDEVICES; i++)

 serialNumbers[i] = (char*)malloc(sizeof(char)*SCI_SN_LENGTH);

/*

 MAXDEVICES is the number of devices to allocate memory for.

 SCI_SN_LENGTH is defined as 0x09.

*/

 Status = SearchDevices(comm_interface, serialNumbers, &nDevices);

 if(status != SCI_SUCCESS)

 ...error handling, free allocated memory...

It is important to free all allocated memory immediately once it is not in use. The following code lines

show how to deallocate the memory used to hold the serial numbers.

for(i=0;i<MAXDEVICES; i++)

free(serialNumbers[i]);

free(serialNumbers);

Rev 1.2 | SC5520A and SC5521A Programming Manual SignalCore, Inc.

6 SC5520A & SC5521A Programming Manual

3.2 Opening and Connecting to a Device

The first step to communicate with the device is to open a connection from the host computer. The

following code is an example of how this is done using the DeviceOpen() function. The function returns

a HANDLE to the device that must be used by subsequent function calls to the device.

SCISTATUS status;

HANDLE device_handle;

Uint8_t baudrate = 1; // rate: 0 = 57600 1 = 115200

sciCommInterface_t commInterface = RS232_INT;

Status = DeviceOpen(commInterface, COM1, baudrate, &device_handle);

Note, serial baud rate of the device defaults to 115200 if the baud rate pin is left unconnected or pulled

high. The COM1 of type char for this example accesses the device through the serial port. Upon

successfully executing this function, the device active LED on the front panel will turn green. This

DeviceOpen() call does not apply any other changes to the device; its working state remains

unchanged by the command.

3.3 Disconnecting from and Closing a Device

When the device is no longer in use, the application should disconnect it from the host computer. This is

done by using the DeviceClose() function. Once it has executed, the active LED on the front panel will

turn off, and the HANDLE to the device will no longer be valid for further use.

status = DeviceClose(device_handle);

deviceHandle = NULL;

3.4 Opening Multiple Devices

Multiple devices may be opened simultaneously within one application. The DeviceOpen() function

must be called for each of the devices using their respective serial numbers / serial ports. The HANDLE

returned by each call is unique to each device and must be used for subsequent calls only on the device

from which it is returned.

3.5 Initialize Device

To initialize the device to its reset state or power-up state, use the following code example.

#define RESET_STATE 1;

#define CURRENT_STATE 0;

Status = InitDevice(device_handle, RESET_STATE);

In the example above, if the value 0 or CURRENT_STATE is written, the device will reprogram all the

hardware to its current state; that is, the state does not change, but the hardware components are

refreshed.

4 Configuration Functions

These functions set the device configuration parameters such as frequency and amplitude.

©2021 | SC5520A and SC5521A Programming Manual Rev 1.2

7 Configuration Functions

4.1 Setting the Frequency at the Output Port

Setting the frequency at the output is simply writing the frequency value to the SetFrequency()
function:

double rf_freq = 15.2e9;

SetFrequency(dev_handle, rf_freq);

4.2 Setting the Offset Phase

When the frequency of the signal changes, its phase with respect to the reference clock is indeterministic.

However, as the signal is settled at a particular frequency, its phase can be changed by writing the

sc5520a_uhfsSetSignalPhase() function. Upon a change in frequency, the phase initial point

returns to 0;

float phase = 10.0;

sc5520a_uhfsSetSignalPhase(dev_handle, phase);

The phase range varies with frequency nominally by design according to the table below

Frequency Phase (deg)

≥ 5 GHz 0 to 360

1.25 GHz to < 2.5 GHz 0 to 180

625 MHz to < 1.25 GHz 0 to 90

375 MHz to < 625 MHz 0 to 45

312.5 MHz to < 375 MHz 0 to 22.5

160MHz to < 312.5 MHz 0 to 11.25

4.3 Setting the Synthesizer Mode

There are various modes that the synthesizer can be configured to work, and the function

SetSynthMode() sets the device to operate with the following parameters:

• lock_mode values are 0 or 1 representing Harmonic and Fractional, respectively. This

lock_mode indicates the harmonic or fractional generator is used by the final phase-lock loop of

the synthesizer. The harmonic generator will provide the best phase noise; however, frequencies

close to the boundaries of 100 MHz multiples may have higher spurious signal levels, especially at

boundary frequencies > 4.3 GHz. The fractional generator does not result in final boundary spurs;

however, the phase noise is degraded from frequency offsets < 100 KHz.

• loop_gain values are 0 or 1 representing Normal and Low. Low gain will generally lower the PLL

loop BW, providing better suppression of spurs > 100 KHz offset from the carrier at the expense

of an increase in phase noise for offsets < 100 kHz. This has noticeable effect when lock_mode is

Harmonic (0).

• disable_spur_suppress only takes effect when lock_mode is Harmonic (0). If it is enabled,

the synthesizer will attempt to suppress spurs by 1) lowering loop gain and/or 2) ping-ponging

Rev 1.2 | SC5520A and SC5521A Programming Manual SignalCore, Inc.

8 SC5520A & SC5521A Programming Manual

between lock modes automatically, especially around boundary spurs. If it is disabled (1), the

synthesizer will not run an internal algorithm to try suppressing spurs.

4.4 Setting the RF Mode

The device can be set to list and stationary single tone operation using function SetRfMode(). Setting

the rf_mode value to 1 configures the device for sweep mode, resulting in the device not being

responsive to frequency change request, but only responding to software or hardware triggers. How the

device responds to these triggers depends on the list mode configuration. See the subsection that

follows.

4.5 Setting the List Mode Configuration

List mode behavior is set by calling the ListModeConfig() function. The list mode structure is

explained below.

typedef struct list_mode_t

{

 uint8_t sweep_mode;

 uint8_t sweep_dir;

 uint8_t tri_waveform;

 uint8_t hw_trigger;

 uint8_t step_on_hw_trig;

 uint8_t return_to_start;

 uint8_t trig_out_enable;

 uint8_t trig_out_on_cycle;

} list_mode_t;

• Sweep_mode indicates whether (0) the frequency points are read from the list manual uploaded

to the device or (1) based on the start, stop, and step frequencies calculations.

• Sweep_dir determines whether the frequency points start from the beginning of the list (start

frequency) or from the end of the list (stop frequency) represented by values 0 or 1, respectively.

• tri_waveform values 0 and 1 are represented by a sawtooth or triangular sweep. A sawtooth

sweep is one that upon reaching the end of the list, immediately returns to the beginning to

complete a cycle. A triangular sweep is one that upon reaching the end, traces the steps

backward to the beginning to complete a cycle.

• hw_trigger, when set to 1, uses the external pin of the IO connector to trigger the list mode

behavior. Software trigger is used when the value is set to 0. Hardware trigger occurs on a low

going transition, a 1 to 0 transition.

• step_on_hw_trig will start the sweep of the frequency points whose interval is based on the

sweep dwell time set by function SweepDwellTime() if its value is zero. If the value is 1, a single

frequency change occurs on each hardware trigger. For time critical applications, hardware

trigger stepping is recommended.

• return_to_start, when set to 1, will always return the frequency pointer to the start upon

completion of cycles, otherwise it will remain at the final frequency point.

• trig_out_enable, when set to 1, enables the trigger output pin on the I/O connector.

©2021 | SC5520A and SC5521A Programming Manual Rev 1.2

9 Configuration Functions

• Trig_out_on_cycle, when set to 1, will pulse the trigger output pin on the completion of each

cycle, otherwise it will pulse on each frequency step.

4.6 Functions to setup List Mode

The following are functions to set up the frequency points, dwell time, and cycles for the list/sweep

behavior. All frequencies are in Hertz (Hz), and dwell times are in 500 µs; that is, a value of 1 is 500 µs, 2 is

1 ms, etc. For if cycle count is set to 0, the sweep will loop continuously until a trigger is detected or when

list mode is disable through SetRfMode(). The functions are:

SweepStartFreq(HANDLE dev_handle, double freq);

SweepStopFreq(HANDLE dev_handle, double freq);

SweepStepFreq(HANDLE dev_handle, double freq);

SweepDwellTime(HANDLE dev_handle, uint32_t dwell_time);

ListCycleCount(HANDLE dev_handle, uint32_t cycle_count);

ListBufferPoints(HANDLE dev_handle, uint32_t list_points);

The ListBufferPoints() functions only applies to the manually loaded list. The points should be less

than or equal to the number of frequency points loaded.

The list of frequency points and their corresponding amplitude levels are loaded to the device by calling

the ListBufferWrite(HANDLE dev_handle, double *freq, float *level, int len)
function. The parameter length must be ≤ to the length of the frequency and level buffers. Once the list

buffers are uploaded, the buffer points can be dynamically changed with the ListBufferPoints()
function if needed.

The ListBufferWrite() discussed here loads the data to a RAM buffer in memory. This buffer can be

stored permanently to EEPROM that can be retrieved upon power up of the device. Transferring data to

and from memories between the EEPROM and the RAM buffer is done by calling the

ListBufferTransfer() function. A value of 0 for the transfer_mode will move data from RAM to

EEPROM and a value of 1 will do the opposite.

When the list mode is configured for software triggering, calling the function ListSoftTrigger() will

trigger the behavior of the list mode.

4.7 Setting the RF Amplitude

4.7.1 Setting the Power Level

The RF power level in dBm is set using function SetPowerLevel():

float rf_level = 4; // 4 dBm

SetPowerLevel(dev_handle, rf_level);

4.7.2 Enabling the Output port

The output signal can be enabled by calling the SetOutputEnable(). This function simply

maximizes the attenuation level and sets the signal to some frequency whose leakage is minimal.

The internal oscillators are fully operational so leakages may still appear at the output port. This

allows the device to enable and put out a signal in a relatively short period of time, typically from

disable to enable would take less than 10 ms. To completely turn the oscillators off to eliminate LO

Rev 1.2 | SC5520A and SC5521A Programming Manual SignalCore, Inc.

10 SC5520A & SC5521A Programming Manual

leakages, call the SetDeviceStandby() function. Furthermore, putting the device into standby

mode powers down most analog functions, except for the reference circuitry that keeps the OCXO

active so that the frequency is stable when the device is taken off standby; cold start of an OCXO

causes frequency drift.

4.7.3 Improving Calibrated Level

If the amplitude accuracy requires very fine adjustment to the output amplitude, incremental

values can be written directly to the amplitude adjustment DAC by calling SetLevelDacValue().

To find out the current level DAC value, call the FetchLevelDacValue() function (See the Query

Functions section). Increasing the DAC value lowers the amplitude.

4.7.4 Disabling Automatic Leveling

When frequency changes, the device needs to compute the parameters for the ALC DAC and

output attenuators to set the amplitude accurately at the new frequency. The computational time

plus component setup time can be as long as 350µs, increasing the switching time between

frequency changes. The raw amplitude variation between 2 frequencies that are less than 100 MHz

apart is typically less than 1 dB, so in applications where this is tolerable the automatic leveling

control should be disabled to increase switch speed. The function to enable and disable automatic

leveling is SetAutoLevelDisable().

4.7.5 Manual Amplitude Control

In applications such as driving a mixer, where automatic leveling is not required, the amplitude can

be coarsely set manually by programming the internal leveling DAC and attenuator. This can be

done by calling the SetLevelDacValue() and SetRfAtten()respectively. The attenuator

provides effectively 20 to 25 dB of adjustment, while the level DAC provides another 15 dB.

4.8 Configuring the Reference Clock

The configuration of the device reference clock behavior is performed using the following function:

uint8_t pxi10Enable = 1; \\ Export PXI-10MHz (valid only in PXIe)

uint8_t select_high = 0; \\ Export 10 MHz instead of 100 MHz

uint8_t lock_external = 1; \\ Lock to external 10 MHz reference clock

SetReferenceMode(dev_handle, pxi10Enable, select_high, lock_external);

The accuracy of the internal 10 MHz OCXO reference can be adjusted finely by changing its control

voltage via a DAC, which can be written to using function SetReferenceDacValue() that accepts a 16

bit value. This new value can be stored as the default using the function StoreDefaultState(), which

will be discussed ahead.

4.9 Saving the New Default State of the Device

The current operating state of the device, including the new DAC value as discussed above, can be stored

as the device default by calling the StoreDefaultState() function. Once this function is executed, the

current state will be the device reset and power up state. This is done by using the following code.

status = SetAsDefault(deviceHandle);

©2021 | SC5520A and SC5521A Programming Manual Rev 1.2

11 Query Functions

5 Query Functions

These functions read back data from the device such as the current device configuration, operating

status, temperature, and other general device information.

5.1 Getting General Device Information

Information such as the product hardware revision, serial number, and more can be retrieved from the

device using the following code:

device_info_t device_info;

status = FetchDeviceInfo(device_handle, &device_info);

The device_info_t structure has the following members (see header files for more info):

typedef struct device_info_t

{

 uint32_t product_serial_number;

 float hardware_revision;

 float firmware_revision;

 uint8_t device_interface;

 struct date

 {

 uint8_t year; // year

 uint8_t month;

 uint8_t day;

 uint8_t hour;

 } man_date;

} device_info_t;

device_interface – 0 = PXI/PXIe, 1=USB&SPI, 2=USB&RS232

5.2 Getting the Device Status

The phase lock loop status of each of the internal synthesizers and the operational configuration such as

the signal path configuration, reference configuration, and local oscillator power status can be obtained

by passing the deviceStatus_t structure into the following function:

deviceStatus_t deviceStatus;

status = GetDeviceStatus(deviceHandle, &device_status);

The members of device_status_t will not be explicitly discussed here as there are many of them. Please

see the sci_uhfs_def.h header file in the Appendix section for details.

5.3 Getting Other RF Parameters

The RF dynamic parameters such as frequency, offset phase, and power level can be read back using the

following code:

device_rf_params_t device_rf_params;

status = GetRfParameters(device_handle, &device_rf_params);

Rev 1.2 | SC5520A and SC5521A Programming Manual SignalCore, Inc.

12 SC5520A & SC5521A Programming Manual

The structure of the device_rf_params_t is as follows:

typedef struct device_rf_params_t

{

 double frequency; //current ch#1 rf frequency

 double sweep_start_freq; //sweep start frequency

 double sweep_stop_freq; //sweep stop frequency (> start_freq)

 double sweep_step_freq; //sweep step frequency

 uint32_t sweep_dwell_time; //dwell time at each frequency

 uint32_t sweep_cycles; //number of cycle to sweep/list

 uint32_t buffer_points; //current number of list buffer points

 float rf_phase_offset; //offset_phase value

 float power_level; //current output power level

 float atten_value; //current rf attenuator value

 uint16_t level_dac_value; //current value of the level DAC

} device_rf_params_t;

5.4 Retrieving the Device Temperature

The device has an internal temperature sensor that reports temperature back in degrees Celsius:

float device_temp;

status = GetTemperature(device_handle, device_temp);

This temperature can be used to monitor the internal temperature of the device to ensure it is not

outside the recommended range.

6 General Functions

6.1 Self-calibration of internal synthesizers

The PSG has 2 main internal synthesizers with very wide band oscillators. The frequencies of these

oscillators are generally outside the capture range of their PLL phase detectors and therefore need pre-

tune voltages to bring the frequency inside their capture range. Thus, a calibration has to be performed

for each synthesizer to figure out what the pre-tune voltages are for various regions of frequencies. The 2

synthesizers are the coarse harmonic and the main synthesizers. To calibrate the internal synthesizers,

call the function SynthSelfCalibrate(device_handle, vco_select) where vco_select is

either 0 or 1 representing the coarse and sum synthesizers, respectively. Over time and changes in

temperature, the raw VCO frequencies may drift, so it is recommended to run the function to re-align the

pre-tune voltages.

6.2 Write Registers

Direct access to the device configuration registers is performed using the RegWrite() function. The

parameter reg_byte is the register address, and these addresses are provided in the

sci_uhfs_regs.h header file. While the register addresses are found in the header file, their map and

definition are provided in the hardware manual. The instruct_word parameter is unsigned 64-bit data

©2021 | SC5520A and SC5521A Programming Manual Rev 1.2

13 Appendix

associated with the register. Using this function, the 3.2 GHz input frequency of the device can be

programmed as follows:

uint8_t reg_byte = RF_FREQUENCY; // RF_FREQUENCY = 0x10

uint64_t instruct_word = 3,200,000,000,000; // in mHz

status = RegWrite(deviceHandle, reg_byte, instruct_word);

6.3 Read Registers

Directly requesting data from the device is performed using RegRead(). The function has the following

form (from the sc5520a_uhfs_functions.h header file):

SCISTATUS RegRead(HANDLE device_handle,

 uint8_t reg_byte,

 uint64_t instruct_word,

 uint64_t *received_word);

Here reg_byte is the register address, instruct_word specifies what returned data associated with

the register is requested while the received_word holds the returned data. Registers that return data

are referred to as query registers, and in many of these the parameter instruct_word is set to 0 (zero)

or simply ignored by the device. However, there are others whose instruct_word requires non-zero

input. For example, to obtain the current frequency, instruct_word is 0 for register address

GET_RF_PARAMETER (0x20) and the code is:

uint64_t instruct_word = 0;

uint64_t received_data;

double frequency;

status = RegRead(deviceHandle, GET_RF_PARAMETERS,

 instruct_word, &received_data);

frequency = (double)received_data * 0.0001; // convert from mHz to Hz

7 Appendix

7.1 Definitions of types

enum LOOPGAIN /* pll loop gain*/

{

 LOW,

 MEDIUM, /* factory default*/

 HIGH

};

typedef enum referenceFreq

{

 _1MHz,

 _5MHz,

 _10MHz,

 _100MHz

} referenceFreq_t;

Rev 1.2 | SC5520A and SC5521A Programming Manual SignalCore, Inc.

14 SC5520A & SC5521A Programming Manual

typedef enum device_interface

{

 PCI_INT = 0, \

 USB_INT, \

 RS232_INT

} device_interface_t;

/*

 * Structure types to hold data

*/

typedef struct device_info_t

{

 uint32_t product_serial_number;

 float hardware_revision;

 float firmware_revision;

 uint8_t device_interfaces;

 struct date

 {

 uint8_t year; // year

 uint8_t month;

 uint8_t day;

 uint8_t hour;

 } man_date;

} device_info_t;

typedef struct list_mode_t

{

 uint8_t sweep_mode; // 0 uses list for buffer, 1 calculates using

stop-start-step

 uint8_t sweep_dir; // 0 start/beginning to stop/end, 1 stop/end to

start/beginning

 uint8_t tri_waveform; // 0 sawtooth, 1 triangular

 uint8_t hw_trigger; // 0 soft trigger expected, 1 hard trigger expected

 uint8_t step_on_hw_trig; // 0 trigger to sweep through list, 1 stepping on

ever trigger (on hard trigger only)

 uint8_t return_to_start; // if 1, frequency returns to start frequency after

end of cycle(s)

 uint8_t trig_out_enable; // 1 enable a trigger pulse at the trigger on pin

 uint8_t trig_out_on_cycle; // 0 trigger out on every frequency change, 1

trigger on cycle complete

} list_mode_t;

typedef struct

{

 uint8_t sum_pll_ld; //lock status of main pll loop

 uint8_t crs_pll_ld; //lock status of coarse offset pll loop (used only

for harmonic mode)

 uint8_t fine_pll_ld; //lock status of the dds tuned fine pll loop

 uint8_t crs_ref_pll_ld; //lock status of the coarse reference pll loop

 uint8_t crs_aux_pll_ld; //lock status of the auxiliary coarse pll loop (used

only for IntN or FracN mode)

©2021 | SC5520A and SC5521A Programming Manual Rev 1.2

15 Appendix

 uint8_t ref_100_pll_ld; //lock status of the 100 MHz VCXO pll loop

 uint8_t ref_10_pll_ld; //lock status of the master 10 MHz TCXO pll loop

} pll_status_t;

typedef struct

{

 uint8_t rf1_lock_mode; //synthesizer lock mode for chn#1: 0 = use harmonic

circuit, 1 = fracN circuit

 uint8_t rf1_loop_gain; //Changing the loop gain of the sum pll. 0 = normal,

1 = low. low gain helps suppress spurs and far out phase noise, but increase the

close in phase.

 uint8_t device_access; //if a seesion has been open for the device

 uint8_t device_standby; //indicates chn#1 standby

 uint8_t auto_pwr_disable; //indicates power adjustment is performed when

frequency is changed.

 uint8_t output_enable; //indicates chn#1 RF output

 uint8_t ext_ref_lock_enable; //indicates that 100 MHz VCXO is set to lock to

an external source

 uint8_t ext_ref_detect; //indicates external source detected

 uint8_t ref_out_select; //indicates the reference output select: 0=10 MHz,

1=100MHz

 uint8_t list_mode_running; //indicates list/sweep is triggered and currently

running

 uint8_t rf_mode; //indicates chn#1 rf mode set: 0=fixed tone state,

1=list/sweep mode state

 uint8_t over_temp; //indicates if the temperature of the devices has

exceeded ~75degC internally

 uint8_t harmonic_ss; //hamonic spur suppression state

 uint8_t pci_clk_enable; //PXI 10 MHz clock enable

} operate_status_t;

typedef struct

{

 list_mode_t list_mode; //list mode parameters

 operate_status_t operate_status; //operating parameters

 pll_status_t pll_status; //pll status

} device_status_t;

typedef struct device_rf_params_t

{

 double frequency; //current ch#1 rf frequency

 double sweep_start_freq;//sweep start frequency

 double sweep_stop_freq; //sweep stop frequency (> start_freq)

 double sweep_step_freq; //sweep step frequency

 uint32_t sweep_dwell_time; // dwell time at each frequency

 uint32_t sweep_cycles; // number of cycle to sweep/list

 uint32_t buffer_points; // current number of list buffer points

 float rf_phase_offset; // phase offset

 float power_level; // current ch power level

 float atten_value; // current rf attenuator value

 uint16_t level_dac_value; // current level DAC value

} device_rf_params_t;

Rev 1.2 | SC5520A and SC5521A Programming Manual SignalCore, Inc.

16 SC5520A & SC5521A Programming Manual

Revision Table

Revision Revision Date Description

0.1 11/24/2019 Document Created

1.0 03/17/2020 Initial Release

1.1 04/22/2020 Grammatical edits

1.2 04/16/2021 Updated Section 4.2 function name

