
© 2015-2020 SignalCore, Inc.
 support@signalcore.com

SC5503B
50 MHz to 10 GHz RF Signal Source
USB, SPI and RS-232 Interfaces

Operating & Programming Manual

SC5503B Operating & Programming Manual Rev 1.1 i

C O N T E N T S

Important Information 1

Warranty 1

Copyright & Trademarks 1

International Materials Declarations 2

CE European Union EMC & Safety Compliance Declaration 2

Warnings Regarding Use of SignalCore Products 3

Getting Started 4

Unpacking 4

Verifying the Contents of your Shipment 4

Setting Up and Configuring the SC5503B 4

Signal Connections 5

Communication and Supply Connection 5

Mini-USB Connection 6

Reset Button (Pin Hole) 6

Indicator LEDs 7

SC5503B Theory of Operation 8

Output Amplitude Control 8

Frequency Synthesizer 9

Frequency Tuning Modes 10

Reference Clock Control 10

Harmonics and Range Operation 11

Device Standby and RF Enable 11

Default Startup Mode 11

SC5503B Programming Interface 12

USB Device Drivers 12

Using the Application Programming Interface (API) 12

Setting the SC5503B: Writing to Configuration Registers 13

Configuration Registers 13

SC5503B Operating & Programming Manual Rev 1.1 ii

Initializing the Device 14

Setting the System Active LED 14

Setting the Device Standby Mode 14

Setting the RF Frequency 14

Setting the RF Power 14

Setting the Synthesizer Mode 14

Setting the RF Automatic Level Control (ALC) Mode 15

Setting the RF ALC DAC Value 15

Setting the Reference Clock 15

Setting the Reference DAC Value 15

Writing to the User EEPROM 15

Setting RF Output Enable 15

Storing the Startup State 15

Disabling the Auto Power Feature 16

Querying the SC5503B: Writing to Request Registers 17

Reading the Device Status 17

Reading the Device Temperature 18

Reading the Calibration EEPROM 18

Reading the User EEPROM 19

Reading the RF ALC DAC Value 19

Calibration EEPROM Map 20

Software API Library Functions 21

Constants Definitions 22

Type Definitions 22

Function Definitions and Usage 23

Programming the RS232 interface 30

Function Definitions and Usage of the RS232 API 30

Addressing the RS232 Registers Directly 30

Writing to the device via RS232 31

Reading from the device via RS232 31

SC5503B Operating & Programming Manual Rev 1.1 iii

Calibration & Maintenance 33

Revision Notes 34

SC5503B Operating & Programming Manual Rev 1.1 1

I M P O R T A N T I N F O R M A T I O N

Warranty

This product is warranted against defects in materials and workmanship for a period of three years from
the date of shipment. SignalCore will, at its option, repair or replace equipment that proves to be
defective during the warranty period. This warranty includes parts and labor.

Before any equipment will be accepted for warranty repair or replacement, a Return Material
Authorization (RMA) number must be obtained from a SignalCore customer service representative and
clearly marked on the outside of the return package. SignalCore will pay all shipping costs relating to
warranty repair or replacement.

SignalCore strives to make the information in this document as accurate as possible. The document has

been carefully reviewed for technical and typographic accuracy. In the event that technical or

typographical errors exist, SignalCore reserves the right to make changes to subsequent editions of this

document without prior notice to possessors of this edition. Please contact SignalCore if errors are

suspected. In no event shall SignalCore be liable for any damages arising out of or related to this

document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, SIGNALCORE, INCORPORATED MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR

NEGLIGENCE ON THE PART OF SIGNALCORE, INCORPORATED SHALL BE LIMITED TO THE AMOUNT

THERETOFORE PAID BY THE CUSTOMER. SIGNALCORE, INCORPORATED WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the

liability of SignalCore, Incorporated will apply regardless of the form of action, whether in contract or

tort, including negligence. Any action against SignalCore, Incorporated must be brought within one year

after the cause of action accrues. SignalCore, Incorporated shall not be liable for any delay in

performance due to causes beyond its reasonable control. The warranty provided herein does not cover

damages, defects, malfunctions, or service failures caused by owner’s failure to follow SignalCore,

Incorporated’s installation, operation, or maintenance instructions; owner’s modification of the product;

owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of

third parties, or other events outside reasonable control.

Copyright & Trademarks

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic

or mechanical, including photocopying, recording, storing in an information retrieval system, or

translating, in whole or in part, without the prior written consent of SignalCore, Incorporated.

SignalCore, Incorporated respects the intellectual property rights of others, and we ask those who use

our products to do the same. Our products are protected by copyright and other intellectual property

SC5503B Operating & Programming Manual Rev 1.1 2

laws. Use of SignalCore products is restricted to applications that do not infringe on the intellectual

property rights of others.

 “SignalCore”, “signalcore.com”, and the phrase “preserving signal integrity” are registered trademarks

of SignalCore, Incorporated. Other product and company names mentioned herein are trademarks or

trade names of their respective companies.

International Materials Declarations

SignalCore, Incorporated uses a fully RoHS compliant manufacturing process for our products.

Therefore, SignalCore hereby declares that its products do not contain restricted materials as defined by

European Union directive 2002/95/EC (EU RoHS) in any amounts higher than limits stated in the

directive. This statement is based on the assumption of reliable information and data provided by our

component suppliers and may not have been independently verified through other means. For products

sold into China, we also comply with the “Administrative Measure on the Control of Pollution Caused by

Electronic Information Products” (China RoHS). In the current stage of this legislation, the content of six

hazardous materials must be explicitly declared. Each of those materials, and the categorical amount

present in our products, are shown below:

組成名稱

Model Name

鉛

Lead

(Pb)

汞

Mercury

(Hg)

镉

Cadmium

(Cd)

六价铬

Hexavalent

Chromium

(Cr(VI))

多溴联苯

Polybrominated

biphenyls

(PBB)

多溴二苯醚

Polybrominated

diphenyl ethers

(PBDE)

SC5503B ✓ ✓ ✓ ✓ ✓ ✓

A ✓ indicates that the hazardous substance contained in all of the homogeneous materials for this

product is below the limit requirement in SJ/T11363-2006. An X indicates that the particular hazardous

substance contained in at least one of the homogeneous materials used for this product is above the

limit requirement in SJ/T11363-2006.

CE European Union EMC & Safety Compliance Declaration

The European Conformity (CE) marking is affixed to products with input of 50 - 1,000 VAC or 75 - 1,500

VDC and/or for products which may cause or be affected by electromagnetic disturbance. The CE

marking symbolizes conformity of the product with the applicable requirements. CE compliance is a

manufacturer’s self-declaration allowing products to circulate freely within the European Union (EU).

SignalCore products meet the essential requirements of Directives 2014/30/EU (EMC) and 2014/35/EU

(product safety) and comply with the relevant standards. Standards for Measurement, Control and

Laboratory Equipment include EN 61326-1:2013 and EN 55011:2009 for EMC, and EN 61010-1 for

product safety.

SC5503B Operating & Programming Manual Rev 1.1 3

Recycling Information

All products sold by SignalCore eventually reach the end of their useful life. SignalCore complies with EU

Directive 2012/19/EU regarding Waste Electrical and Electronic Equipment (WEEE).

Warnings Regarding Use of SignalCore Products

(1)
PRODUCTS FOR SALE BY SIGNALCORE, INCORPORATED ARE NOT DESIGNED WITH COMPONENTS NOR TESTED FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT
SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2)

IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE
FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS,
COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN
APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF
ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE),
UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS
THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A
RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE SOLELY RELIANT
UPON ANY ONE COMPONENT DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR
APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT
LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM
SIGNALCORE' TESTING PLATFORMS, AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE SIGNALCORE PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY SIGNALCORE, THE USER OR
APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF SIGNALCORE PRODUCTS
WHENEVER SIGNALCORE PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE
APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

SC5503B Operating & Programming Manual Rev 1.1 4

G E T T I N G S T A R T E D

Unpacking

All SignalCore products ship in antistatic packaging (bags) to prevent damage from electrostatic

discharge (ESD). Under certain conditions, an ESD event can instantly and permanently damage several

of the components found in SignalCore products. Therefore, to avoid damage when handling any

SignalCore hardware, you must take the following precautions:

• Ground yourself using a grounding strap or by touching a grounded metal object.

• Touch the antistatic bag to a grounded metal object before removing the hardware

from its packaging.

• Never touch exposed signal pins. Due to the inherent performance degradation caused

by ESD protection circuits in the RF path, the device has minimal ESD protection against

direct injection of ESD into the RF signal pins.

• When not in use, store all SignalCore products in their original antistatic bags.

Remove the product from its packaging and inspect it for loose components or any signs of damage.

Notify SignalCore immediately if the product appears damaged in any way.

Verifying the Contents of your Shipment

Verify that your SC5503B kit contains the following items:

Quantity Item

1 SC5503B RF Signal Source

1 USB flash drive with installation software

Setting Up and Configuring the SC5503B

The SC5503B is a core module-based RF CW generator with all user I/O located on the front face of the

module as shown in Figure 1. Each location is discussed in further detail below.

!

Figure 1. Front view of the SC5503B showing I/O connection locations.

SC5503B Operating & Programming Manual Rev 1.1 5

Signal Connections

All signal connections (ports) to the SC5503B are SMA-type. Exercise caution when fastening cables to

the SMA connections. Over-tightening any connection can cause permanent damage to the device.

The condition of your system‘s signal connections can significantly affect measurement

accuracy and repeatability. Improperly mated connections or dirty, damaged or worn

connectors can degrade measurement performance. Clean out any loose, dry debris from

connectors with clean, low-pressure air (available in spray cans from office supply stores).

If deeper cleaning is necessary, use lint-free swabs and isopropyl alcohol to gently clean

inside the connector barrel and the external threads. Do not mate connectors until the

alcohol has completely evaporated. Excess liquid alcohol trapped inside the connector may

degrade measurement performance until fully evaporated (this may take several days).

 Tighten all SMA connections to 8.8 in-lb max (100 N-cm max)

RF OUT RF output port with frequency range from 50 MHz to 10 GHz with nominal input impedance

is 50 Ω. The port is AC coupled.

REF IN This port accepts an external 10 MHz reference signal, allowing an external source to

synchronize the internal reference clock. This port is AC-coupled with a nominal input

impedance of 50 Ω. Maximum input power is +13 dBm.

REF OUT This port outputs the internal 10 MHz or 100 MHz reference clock. If the internal reference

clock is synchronized to an external reference clock through the 10 MHz “ref in” port, this

output port will also be synchronized. This port is AC-coupled with a nominal output

impedance of 50 Ω.

Communication and Supply Connection

Figure 2 Power and I/O connector

Power and communication to the device is provided through a Molex Milli-GridM 2.00mm pitch, 30

position, male header connector, whose part number is 87833-3020. A suggested receptacle female

connector is the crimp terminal type 51110-3051 or ribbon type 87568-3093 from Molex. The pin

definitions of this I/O connector are listed below.

!

!

SC5503B Operating & Programming Manual Rev 1.1 6

Communication IO connector pin definitions

PIN # PIN #

1,3 12V Supply rail 21 Device Active

2,4,10,16,
20,24,28

GND 22 Device Status

5,6,7,8,9,
15,18,21

Reserved, do not connect 23 Baudrate/Spi Mode

11 USB+ 25
CTS/CS. This pin is CTS for RS232 or device
select for SPI

13 USB- 26 SPI Clock

14 USB_VBUS 27
TX/MISO. This pin is TX for RS232 or MISO
for SPI

17
Reserved, pull high to 3.3V or
DNC

 29
RX/MOSI. This pin is RX for RS232 or MOSI
for SPI

19 Reset, logic 0 to reset device 30
RTS/SRDY. This pin is RTS for RS232 or serial
ready for SPI

Mini-USB Connection

The SC5503B uses a mini-USB Type B connector for USB communication with the device using the

standard USB 2.0 protocol (full speed) found on most host computers. The pinout of this connector,

viewed from the board edge, is shown in the table above.

Reset Button (Pin Hole)

Behind this pin hole is the reset button. Using a pin and lightly depressing this momentary-action push

button switch will cause a hard reset to the device, putting it back to its default settings. All user settings

will be lost. System reset capability can also be accessed through the communication header connector.

Pin
USB

Function
Description

1 VBUS Vcc (+5 Volts)

2 D - Serial data

3 D + Serial data

4 ID Not used

5 GND
Device ground (also tied to

connector shell)

SC5503B Operating & Programming Manual Rev 1.1 7

Indicator LEDs

The SC5503B provides visual indication of important modes. There are two redundant pairs of LED

indicators on the device, two to the left of the micro-D connector and two on the opposite side of the

module. The LED closest to the micro-D connector indicates STATUS. The LED to the left of the STATUS

LED indicates ACTIVE. The pair of LEDs on the opposite side of the module are oriented the same way.

Their behavior under different operating conditions is shown in the table below.

LED Color Definition

STATUS Green “Power good” and all oscillators phase-locked

STATUS Red One or more oscillators off lock

STATUS Off Power fault

ACTIVE Green/Off Device is open (green) /closed (off) , this indicator is also user

programmable (see register map)
ACTIVE Orange User initiated standby mode

SC5503B Operating & Programming Manual Rev 1.1 8

S C 5 5 0 3 B T H E O R Y O F O P E R A T I O N

Output Amplitude Control

As shown in Figure 3, the SC5503B source architecture at a high level consists of an output amplitude

control section and a frequency synthesis section. The amplitude of the signal is controlled through the

use of digital step attenuators (DSAs) and a voltage controlled attenuator (VCA). The DSAs provide

coarse-step tuning over a wide range while the VCA provides fine tune correction to the DSA. The VCA is

part of the automatic level control loop (ALC), which additionally consists of an RF amplifier, a power

detector, and an integrator. The ALC loop can be closed or open. In the closed loop mode, the power

detector outputs a voltage proportional to the power it detects. This voltage is compared to that of the

reference ALC DAC voltage, which in turn is set for some calibrated power level. Voltage error between

the detector voltage and the ALC DAC voltage drives the integrator output in the direction that will vary

the VCA to achieve the desired output power level. When the ALC control loop is opened, the power

detector output voltage is grounded, and the integrator is configured as a voltage buffer that drives the

ALC DAC voltage to the VCA. In this mode, the ALC DAC voltage directly drives the VCA with voltage

levels that correspond to calibrated output power levels.

There are advantages and disadvantages with either of these two amplitude control modes. On one

hand, the open loop mode has an advantage over the closed loop mode when close-in carrier amplitude

noise is a concern. ALC loops do introduce some level of amplitude modulated noise onto the carrier

signal, and these levels may not be acceptable although they are generally lower than the phase noise.

SignalCore offers the option to open the ALC loop to remove any unwanted AM noise that results from

closed loop control. Another side effect of the closed loop is that the frequency bandwidth of the ALC

loop may slow down amplitude settling. Typically, in order to keep AM noise low and close (in offset

frequency) to the signal, the loop bandwidth is also kept low. As a result, the settling time is increased.

On the other hand, a closed loop ALC provides better amplitude control over the entire frequency range.

With a temperature-stable ALC DAC, the closed loop will precisely maintain the power at the detector,

mitigating errors in the components prior to it in the signal path. Temperature-induced errors in

components and abrupt amplitude changes when switching filters in the filter banks contribute to errors

in the amplitude of the signal. However, these errors occur before the power detector and are

compensated by the feedback loop action. Errors in amplitude are thus confined primarily to the output

attenuators, amplifiers, and the loop components. When the loop is opened, amplitude errors resulting

from all parts of the amplitude control section as well as the synthesizer section affect the overall

output amplitude accuracy. In particular, when the filters within the filter bank are switched from one

bank to another the signal experiences abrupt discontinuities in its amplitude which the open loop

calibration cannot appropriately account for in its correction algorithm.

Setting of the amplitude control components is performed automatically by the system, although it is

possible to override the ALC DAC value if needed. In Figure 3, the labels in red indicate parameters or

devices which the user can directly control.

SC5503B Operating & Programming Manual Rev 1.1 9

Frequency Synthesizer

The synthesizer section of the SC5503B comprises a multiple phase-locked loop architecture whose base

frequency reference is a 10 MHz TCXO. The user may choose to phase-lock this base reference to an

external source if required. The 100 MHz VCXO is phase-locked to the TCXO for frequency stability.

While the TCXO determines the very close-in phase noise, the VCXO phase noise determines the system

phase noise in the frequency offset regions of approximately 1 kHz to 30 kHz. The 100 MHz VCXO

provides the reference signal to the main RF signal synthesizer comprised of three phase-locked loops

and a direct digital synthesis (DDS) oscillator. The “fine” PLL provides a tuning resolution of a few mHz

over a narrow frequency range, while the “coarse” PLL tunes in steps of a few MHz over several GHz of

range. The “main” or summing PLL combines the signals of the “coarse” and “fine” loops into one broad

tuning signal with fine stepping.

Figure 3. Simplified block diagram of the SC5503B RF signal source.

Using this multiple loop approach produces signals with low phase noise and low phase spurs, high

levels of which exist in single loop architectures such as single fractional-N PLLs. Although a single

fractional-N type PLL may provide fine resolution, its large fractional spurs may make it unusable at

certain parts of the band - especially at frequency regions close to the integer boundaries. A multiple

loop architecture allows for fine tuning with extremely low phase spurs. Furthermore, to improve the

overall phase noise profile of the signal, a YIG-based oscillator anchors the main PLL instead of a diode-

ALC

DAC

ALC

MODE

ALC

LOOP
FILTER

BANK

N

N

N

N

DDS

FINE PLL

MAIN PLL

COARSE

PLL

4.5 – 10.0 GHz

YIG

DRIVER

A

REF

OUT

REF

IN

REF

DAC

10 MHz

TCXO

100 MHz

VCXO

LCK

EXT

REF

10

1,2,4,...128

30 dB

DSA

30 dB

DSA

30 dB

DSA

FREQ

OUT

SEL

REF

OUT

ENABLE

SYNTH

MODE

PXI

CLK

10MHz

PXIe

BACKPLANE

PXI CLK

ENABLE

ONLY SC5502A

VCA

RF

OUT

YIG

POWER SUPPLY, MCU, BUS

SC5503B Operating & Programming Manual Rev 1.1 10

based VCO because of the YIG’s superior far-out phase noise performance in the frequency offset

regions of 100 kHz to 10 MHz.

Frequency Tuning Modes

The synthesizer has two sets of control parameters that can be explored to optimize the device for a

particular application. The first set of parameters, TUNE SPEED, sets the tuning and phase locking time

as frequency is changed. TUNE SPEED comprises two modes - Fast Tune mode and Normal mode, both

of which affect the YIG oscillator configuration. The Fast Tune mode deactivates a noise suppression

capacitor across the tuning coil of the YIG oscillator. Doing so increases the rate of current flow through

the coil and hence increases the available rate of frequency change. In Normal mode, the capacitor is

activated, slowing down the available rate of frequency change. The advantage of activating the

capacitor is that its presence in the circuit shunts the noise developed across the coil, decreasing close-

in phase noise.

The other set of control parameters, FINE TUNE, sets the tuning resolution of the device. There are three

modes to FINE TUNE: 1 MHz, 25 kHz, and 1 Hz steps. In the first two modes, the “fine” PLL uses the

VCXO signal directly to synthesize its frequency and step size, while in the third mode it uses a DDS to

provide 1 Hz resolution. The PLL-only modes provide the ability to realize exact frequencies with tuning

as fine as 25 kHz. These modes offer several advantages including lower phase spurs and less

computational demand required to set a new frequency. The 1 MHz mode has the lowest phase

spurious signals, below the level of the product specifications. The DDS mode also tunes to exact

frequencies. However, it requires many more computing cycles and several more internal device

registers to write to in order to set a new frequency. Comparing setup times, the PLL-only modes require

up to 175 microseconds to compute and setup the device for a new frequency, whereas the DDS mode

can require up to 350 microseconds to perform the same action. At first glance it may seem that these

differences could impact the frequency tuning times. However, the tuning times are predominantly set

by the physical parameters of the YIG oscillator. Computation and register writes typically account for

less than 25% of the total tune time of a 10 MHz step change in frequency.

Reference Clock Control

As mentioned above, the primary clock reference for the SC5503B is an onboard 10 MHz TCXO. Should

the user require better frequency stability and/or accuracy, this TCXO can be programmed to phase-lock

to an external source such as an OCXO or rubidium clock. The device can also be programmed to export

either a 10 MHz or 100 MHz reference signal. To adjust the accuracy of the TCXO as needed, for

example, to correct for long-term accuracy drift, the user may vary the reference DAC voltage by writing

the REFERENCE_DAC_SETTING register.

The SC5503B can be programmed to lock to an external reference usually for better stability and

accuracy, or for synchronizing the device to the reference. The reference source must be connected to

the Ref In port. The device reference can be exported out the Ref Out port, and the user can choose to

export a 10 MHz or 100 MHz signal.

SC5503B Operating & Programming Manual Rev 1.1 11

Harmonics and Range Operation

The SC5503B’s guaranteed operating frequency range is 50 MHz to 10 GHz. At low frequencies of

operation (200 MHz and lower), the harmonics of the signal can potentially be observed as high as -10

dBc at 0 dBm output. This is due to the limited space available for additional filtering in these ranges. At

lower frequencies, the large physical size of appropriate filters makes it impossible to accommodate

them within the compact form of this device. Furthermore, as the low frequencies are synthesized

through frequency dividers, their output waveforms become more “square” than sinusoidal, giving rise

to higher odd-order harmonics.

The device is specified to a maximum calibrated level of +10 dBm for frequencies up to 9 GHz, and to a

maximum of +7 dBm for frequencies greater than 9 GHz, although the maximum calibrated output is

greater than that in most regions of the spectrum. The accuracy degrades as the amplitude approaches

the compression point due to the linear approximation in the correction algorithm. As a general rule,

however, the lower the tuned frequency, the higher the achievable output power.

Device Standby and RF Enable

The SC5503B has both standby and RF output enable features. The user may wish to put the device into

standby mode to reduce power consumption and thus lower the operating temperature of the device

under the same environmental conditions. Taking the device out of standby requires the device to wait

for the power rails to settle and all internal components to be reprogrammed, usually about one second.

Disabling the RF output moves the frequency to some very low value so that the step attenuators (DSA)

and voltage controlled attenuators (VCA) have the most effective attenuation. This will push the signal

level below -100 dBm. Enabling the RF output is nearly instantaneous as all components remain active

even when the output is disabled.

Default Startup Mode

The factory power-up state for the device is detailed in Table 1. The default state can be changed to the

current state programmatically, allowing the user to power up the device in the last saved state without

having to reprogram.

Table 1 Factory default power-up state

Frequency 5.0 GHz Standby Disabled
Power 0.00 dBm Auto Level Enabled

RF Output Enabled Ref Out Disabled
ALC Mode Closed Loop Ext Ref Lock Disabled

SC5503B Operating & Programming Manual Rev 1.1 12

S C 5 5 0 3 B P R O G R A M M I N G I N T E R F A C E

USB Device Drivers

The SC5503B is programmed by writing to its set of configuration registers, and its status is read back

through its set of query registers. The user may choose to program directly at register level or through

the API library functions provided. These API library functions are wrapper functions of the registers that

simplify the task of configuring of the register bytes. The register specifics are covered in the next

section. Writing to and reading from the device at the register level through the API involves calls to the

SC5503B_RegWrite and SC5503B_RegRead functions respectively.

For Microsoft WindowsTM operating systems, The SC5503B API is provided as a dynamic linked library,

SC5503B.dll, which is available for 32bit and 64bit operating systems. This API is based on the libusb-1.0

library and therefore it is required to be installed on the system prior to development. The libusb-1.0.dll

will install along with the SC5503B.dll, and along with the header files for development. However for

possible newer versions of libusb-1.0, visit http://libusbx.org to check for version updates and

downloads. To install the necessary drivers, right click on the SC5503B.inf file under the Win\ directory

and choose install. When the device is connected to a USB port, the host computer should identify the

device and load the appropriate driver. For more information, see the SC5503B_Readme.txt file in the

same directory as the SC5503B.inf file.

For LabVIEWTM support, a full LabVIEW API is provided and is available under the Win\API\LabVIEW\

directory. To use the library, copy the “SignalCore” folder in that directory to %LabVIEW path%\instr.lib

location of your LabVIEW installation directory. The LabVIEW functions are simply wrappers around

SC5503B.dll, however code written purely in LabVIEW-G that does not call or depend on external library

functions is available on request. Use the National Instruments driver wizard that comes with NI-VISA to

create a driver in the operating system of choice if pure G code is used. The Vendor ID is 0x277C and the

PID is 0x0015.

The Linux driver is in the Linux/ directory. Please read the ReadMe.txt file for installation and

compilation instructions.

For other operating systems, users will need to write and compile their own drivers. The device register

map provides the necessary information to successfully implement a driver for the SC5503B. Driver code

based on libusb-1.0 is available to our customers by request. Should the user require assistance in

writing an appropriate API other than that provided, please contact SignalCore for additional example

code and hardware details.

Using the Application Programming Interface (API)

The SC5503B API library functions make it easy for the user to communicate with the device. Using the

API removes the need to understand register-level details - their configuration, address, data format,

etc. Using the API, commands to control the device are greatly simplified. For example, to obtain the

device temperature, the user simply calls the function SC5503B_GetDeviceTemperature or

SC5503B_SetFrequency to tune the frequency. The software API is covered in detail in the “Software API

Library Functions” section.

http://libusbx.org/

SC5503B Operating & Programming Manual Rev 1.1 13

S E T T I N G T H E S C 5 5 0 3 B : W R I T I N G T O

C O N F I G U R A T I O N R E G I S T E R S

Configuration Registers

Users may write the configuration registers (write only) directly by calling the SC5503B_RegWrite

function. The syntax for this function is SC5503B_RegWrite(deviceHandle, registerCommand,

instructWord). The instructWord takes a 64 bit-word. However, it will only send the required number of

bytes to the device. These registers are the same for USB, SPI, and RS232; see the SPI and RS232

sections for data transfer details. Table 2 summarizes the register addresses (commands) and the

effective bytes of command data.

Table 2. Configuration registers.

Register Name
Register
Address

Serial
Range

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INITIALIZE 0x01 [7:0] Open Open Open Open Open Open Open Mode

SET_SYSTEM_ACTIVE 0x02 [7:0] Open Open Open Open Open Open Open
Enable

“active”
LED

DEVICE_STANDBY 0x05 [7:0] Open Open Open Open Open Open Open Mode

RF_FREQUENCY 0x10

[7:0] Fine Frequency Adjust Word [7:0]

[15:8] Fine Frequency Adjust Word [15:8]

[23:16] Fine Frequency Adjust Word [23:16]

[31:24] Fine Frequency Adjust Word [31:24]

[39:32] Fine Frequency Adjust Word [39:32]

RF_POWER 0x11
[7:0] RF Power Word [7:0]

[15:8] Sign Bit RF Power Word [14:8]

SYNTH_MODE 0x12 [7:0] Fast
Tune

Fine Tune Modes

RF_ALC_MODE 0x13 [7:0] Open Open Open Open Open Open Open Mode

SET_ALC DAC_VALUE 0x14
[7:0] ALC DAC Word [7:0]

[15:8] ALC DAC Word [13:8]

REFERENCE_MODE 0x15 [7:0] Open Open Open Open Open

100
MHz
Out

Enable

Ref Out
Enable

Lock
Enable

REFERENCE_DAC_SETTING 0x16
[7:0] REFERENCE DAC Word [7:0]

[15:8] Open Open REFERENCE DAC Word [13:8]

USER_EEPROM_WRITE 0x23

[7:0] DATA [7:0]

[15:8] EEPROM Address [15:8]

[23:16] EEPROM Address [23:16]

RF_OUT_ENABLE 0x26 [7:0] Open Open Open Open Open Open Open Mode

STORE_STARTUP_STATE 0x28 [7:0] Open Open Open Open Open Open Open Open

AUTO_POWER_DISABLE 0x29 [7:0] Open Open Open Open Open Open Open Mode

SC5503B Operating & Programming Manual Rev 1.1 14

To write to the device through USB transfers such as bulk transfer, it is important to send data with the

register byte first, followed with the MSB of the data bytes. For example, to set the RF level to some

power amplitude, the byte stream is [0x11][15:8][7:0].

Initializing the Device

INITIALIZE (0x01) - Writing 0x00 to this register will reset the device to the default power-on state.

Writing 0x01 will reset the device but leave it in the current state. The user has the ability to define the

default startup state by writing to the START UP STATE (0x28) register, described later in this section.

Setting the System Active LED

SET_SYSTEM_ACTIVE (0x02) - This register turns on the front panel “active” LED with a write of 0x01 or

turns off the LED with a write of 0x00. This register is generally written when the device driver opens or

closes the device.

Setting the Device Standby Mode

DEVICE_STANDBY (0x05) - Writing 0x01 to this register will power down the analog/RF circuitry. Writing

0x00 to this register will enable the analog/RF circuitry and the device will return to its last programmed

state.

Setting the RF Frequency

RF_FREQUENCY (0x10) - This register sets the RF frequency. Data is sent as a 40 bit word with the LSB in

Hz.

Setting the RF Power

RF_POWER (0x11) - This register sets the RF power level. The LSB is 1/100th of a dB and absolute

magnitude is carried in the first 15 bits, starting with bit 0. The sign bit is indicated on bit 15. Setting bit

15 high implies a negative magnitude. For example, to write 10.05 dBm to the register, the data is 1005

(0x03ED). For -10.05 dBm, the data is 33773 (0x83ED).

Setting the Synthesizer Mode

SYNTH_MODE (0x12) - This register has one data byte and provides two tuning modes for the device -

Fast Tune and Fine Tune. By default, the Fast Tune is disabled (normal mode). Asserting high bit 2 of the

data byte will enable Fast Tune. Fast Tune enables the device for faster lock and settling times between

frequency changes. The Fine Tune mode has 3 options - 1 MHz (PLL), 25 kHz (PLL), and 1 Hz (DDS).

Selection of these options requires setting the first 2 bits of the data byte to 0, 1, and 2, respectively.

See the “Frequency Tuning Modes” section for more information. As an example, to set the device for

Fast Tune and step at 1 Hz resolution, write 0x06.

SC5503B Operating & Programming Manual Rev 1.1 15

Setting the RF Automatic Level Control (ALC) Mode

RF_ALC_MODE (0x13) - Writing 0x00 to this register puts the ALC in a closed loop operation. Writing

0x01 will run the ALC in an open loop. See the “Output Amplitude Control” section to understand the

differences between the modes.

Setting the RF ALC DAC Value

SET_ALC_DAC_VALUE (0x14) - Writing a 14 bit control word to the ALC DAC register adjusts output

amplitude. This is useful when the user wants to make small adjustments to the power level.

Setting the Reference Clock

REFERENCE_MODE (0x15) - This register sets the behavior of the reference clock section. Bit 3 enables

(1) or disables (0) the PXI 10 MHz clock, Bit 2 selects whether the output reference signal is 10 MHz (0)

or 100 MHz (1), Bit 1 enables (1) or disables (0) the output reference signal, and Bit 0 enables (1) or

disables (0) the device to phase-lock to an external source. It is important that if the device is not

intended to lock externally, the external source connection should be removed from the “ref in”

connector. Even with external locking disabled, the presence of a large signal from the external source

on the reference input terminal could potentially modulate the internal references, causing a spur offset

in the RF signal.

Setting the Reference DAC Value

REFERENCE_DAC_SETTING (0x16) - The frequency precision of the device’s 10 MHz TCXO is set by the

device internally and the factory calibrated unsigned 14 bit value is written to the reference DAC on

power-up from the EEPROM. The user may choose to write a different value to the reference DAC by

accessing this register, for example, to correct for long-term accuracy drift.

Writing to the User EEPROM

USER_EEPROM_WRITE (0x23) - There is an onboard 32 kilobyte EEPROM for the user to store data. User

data is sent one byte at a time and is contained in the last (least significant) of the three bytes of data

written to the register. The other two bytes contain the write address in the EEPROM. For example, to

write user data 0x22 into address 0x1F00 requires writing 0x1F0022 to this register.

Setting RF Output Enable

RF_OUT_ENABLE (0x26) - This register enables or disables the RF signal output. Setting bit 0 low (0)

disables RF output. Setting bit 0 high (1) enables RF output.

Storing the Startup State

STORE_STARTUP_STATE (0x28) – Writing to this register will save the current device state as the new

default power on (startup) state. All data written to this register will be ignored as only the write

command is needed to initiate the save.

SC5503B Operating & Programming Manual Rev 1.1 16

Disabling the Auto Power Feature

AUTO_POWER_DISABLE (0x29) - When changing frequency, the device will calculate new settings for

the amplitude control components such that the amplitude remains the same as the last setting. If the

amplitude is also changed at the new frequency setting, the user has the option to turn off this auto

power adjustment. By default, auto power adjust is enabled. To disable this feature, set bit 0 high (1).

SC5503B Operating & Programming Manual Rev 1.1 17

Q U E R Y I N G T H E S C 5 5 0 3 B : W R I T I N G T O

R E Q U E S T R E G I S T E R S

The registers to read data back from the device (such as device status) are accessed through the

SC5503B_RegRead function. The function and parameter format for this command is

SC5503B_RegRead(deviceHandle, registerCommand, instructWord,*dataOut). Any instruction in

addition to the register call are placed into “instructWord”, and data obtained from the device is

returned via the pointer value dataOut. The set of request registers are shown in Table 3.

Table 3. Query registers.

Register Name
Register
Address

Serial
Range

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

GET_DEVICE_STATUS 0x17 [7:0] Open Open Open Open Open Open Open Open

GET_TEMPERATURE 0x18 [7:0] Open Open Open Open Open Open Open Open

CAL_EEPROM_READ 0x20
[7:0] EEPROM Address [7:0]

[15:8] EEPROM Address [15:8]

USER_EEPROM_READ 0x22
[7:0] EEPROM Address [7:0]

[15:8] EEPROM Address [15:8]

GET_ALC_DAC_VALUE 0x2A [7:0] Open Open Open Open Open Open Open Open

To read from the device using native USB transfers instead of the SC5503B_RegRead function requires

two operations. First, a write transfer is made to the device ENPOINT_OUT to tell the device what data

needs to be read back. Then, a read transfer is made from ENDPOINT_IN to obtain the data. The

number of valid bytes returned varies from 1 to 3 bytes. See the register details below.

Reading the Device Status

GET_DEVICE_STATUS (0x17) - This register, summarized in Table 4, returns the device status

information such as phase lock status of the PLL, current reference settings, etc. Data is contained in the

first three bytes.

Table 4. Description of the status data bits.

Bit Description

[15] 10 MHz TCXO PLL lock status

[14] 100 MHz VCXO PLL lock status

[13] Main PLL lock status

[12] Reserved

[11] Reserved

[10] Fine PLL lock status

[9] Coarse PLL lock status

SC5503B Operating & Programming Manual Rev 1.1 18

Bit Description

[8] Reserved

[7] External reference detected

[6] Reference output enabled

[5] Reference lock enabled

[4] ALC mode

[3] Fast tune state

[2] Device standby state

[1] RF out state

[0] PXI clock state (only used for PXI versions)

Reading the Device Temperature

GET_TEMPERATURE (0x18) - Data returned by this register needs to be processed to correctly represent

data in temperature units of degrees Celsius. Data is returned in the first 14 bits [13:0]. Bit [13] is the

polarity bit indicating whether it is positive (0x0) or negative (0x1). The temperature value represented

in the raw data is contained in the next 13 bits [12:0]. To obtain the temperature ADC code, the raw

data should be masked (bitwise AND’ed) with 0x1FFF, and the polarity should be masked with 0x2000.

The conversion from 12 bit ADC code to an actual temperature reading in degrees Celsius is shown

below:

Positive Temperature (bit 13 is 0) = ADC code / 32

Negative Temperature (bit 13 is 1) = (ADC code – 8192) / 32

It is not recommended to read the temperature too frequently, especially once the SC5503B has

stabilized in temperature. The temperature sensor is a serial device located inside the RF module.

Therefore, like any other serial device, reading the temperature sensor requires sending serial clock and

data commands from the processor. The process of sending clock pulses on the serial transfer line may

cause unwanted spurs on the RF signal as the serial clock could potentially modulate the internal

oscillators. Furthermore, once the SC5503B stabilizes in temperature, repeated readings will likely differ

by as little as 0.25 °C over extended periods of time. Given that the gain-to-temperature coefficient is on

the order of less than -0.01 dB/°C, gain changes between readings will be negligible.

Reading the Calibration EEPROM

CAL_EEPROM_READ (0x20) - Reading a single byte from an address in the device EEPROM is performed

by writing this register with the address for the instructWord. The data is returned as a byte. The CAL

EEPROM maximum address is 0x7FFF. Reading above this address will cause the device to retrieve data

from the lower addresses. For example, addressing 0x8000 will return data stored in address location

0x0000. The calibration EEPROM map is shown in Table 5.

SC5503B Operating & Programming Manual Rev 1.1 19

All calibration data, whether floats, unsigned 8-bit, unsigned 16-bit or unsigned 32-bit integers, are

stored as flattened unsigned byte representation. A float is flattened to 4 unsigned bytes, so once it is

read back it needs to be un-flattened back to its original type. Unsigned values containing more than a

single byte are converted (un-flattened) simply by concatenation of the bytes through bit-shifting.

Converting to floating point representation is slightly more involved. First, convert the 4 bytes into an

unsigned 32-bit integer value, and then (in C/C++) type-cast a float pointer to the address of the value.

In C/C++, the code would be float Y = *(float *)&X, where X has been converted earlier to an unsigned

integer.

An example written in C code would look something like the following:

Reading the User EEPROM

USER_EEPROM_READ (0x22) - Once data has been written to the user EEPROM, it can be retrieved by

calling this register and using the process outlined above for reading calibration data. The maximum

address for this EEPROM is also 0x7FFF.

Reading the RF ALC DAC Value

GET_ALC_DAC_VALUE (0x2A) - The user may be interested to obtain the current value of the ALC DAC

for the purpose of making minor adjustments to the RF output power level. Data is returned in the first

14 bits.

byte_value[4]; // read in earlier

unsigned int uint32_value;

float float32_value;

int count = 0;

while (count < 4) {

 uint32_value = unit32_value | (byte_value[count] <<

(count*8));

 count++;

}

float32_value = *(float *)&uint32_value;

SC5503B Operating & Programming Manual Rev 1.1 20

C A L I B R A T I O N E E P R O M M A P

Table 5. Calibration EEPROM map.

EEPROM
ADDRESS

(HEX)

DATA
POINTS TYPE DESCRIPTION

0 1 U32 Manufacturing Information

4 1 U32 Product serial number

8 1 U32 RF module number

C 1 U32 Product manufacture date

10 1 U32 Last calibration date

14 4 U32 Reserved

2C 1 F32 Firmware revision

30 1 F32 Synthesizer CCA hardware revision

34 3 F32 Signal conditioning CCA hardware revision

40 2 U32 Startup RF frequency

48 1 F32 Startup RF power

4C 1 U32 Other startup states

50 1 F32 Calibration temperature

54 1 U32 TCXO DAC calibration value

58 112 U8 Reserved

C8 40 F32 YIG calibration frequency

168 40 U32 YIG calibration DAC values

208 40 F32 YIG spline interpolants

2A8 88 U8 Reserved

300 5 F32 ALC enabled temperature coefficient

314 5 F32 ALC disabled temperature coefficient

328 1 U8 Reference attenuation value

329 245 U16 ALC calibration frequencies (MHz)

513 125 U16 Attenuator calibration frequencies (MHz)

60D 245 F32 ALC close reference RF power

9E1 245 U16 ALC close reference DAC values

BCB 735 F32 ALC close coefficient

1747 245 F32 ALC open reference RF power

1B1B 245 U16 ALC open reference DAC value

1D05 735 F32 ALC open coefficient

2881 5520 F32 Attenuator calibration values

SC5503B Operating & Programming Manual Rev 1.1 21

S O F T W A R E A P I L I B R A R Y F U N C T I O N S

SignalCore’s philosophy is to provide products to our customers whose lower hardware functions are

easily accessible. For experienced users who wish to use direct, low-level control of frequency and gain

settings, having the ability to access the registers directly is a necessity. However, others may wish for

simpler product integration using higher level function libraries and not having to program registers

directly. The functions provided in the SC5503B API dynamic linked library or LabVIEW library are:

• SC5503B_ SearchDevices

• SC5503B_OpenDevice

• SC5503B_CloseDevice

• SC5503B_RegWrite

• SC5503B_RegRead

• SC5503B_InitDevice

• SC5503B_SetStandby

• SC5503B_SetFrequency

• SC5503B_SetPowerLevel

• SC5503B_SetRfOut

• SC5503B_SetAlcMode

• SC5503B_SetAlcDac

• SC5503B_SetSynthesizerMode

• SC5503B_SetReferenceClock

• SC5503B_SetReferenceDac

• SC5503B_WriteUserEeprom

• SC5503B_StoreCurrentState

• SC5503B_DisableAutoLevel

• SC5503B_GetDeviceInfo

• SC5503B_GetDeviceStatus

• SC5503B_GetTemperature

• SC5503B_GetAlcDac

• SC5503B_ReadCalEeprom

• SC5503B_ReadUserEeprom

Each of these functions is described in more detail on the following pages. Example code in C/C++ in the

\Win\Driver\src directory is available to show how these functions are called and used. First, for C/C++

we define the constants and types which are contained in the C header file, sc5503b.h. These constants

and types are useful not only as an include for developing user applications using the SC5503B API, but

also for writing device drivers independent of those provided by SignalCore.

SC5503B Operating & Programming Manual Rev 1.1 22

Constants Definitions

// Parameters for storing data in the onboard EEPROMs
#define CALEEPROMSIZE 32768 // size in bytes
#define USEREEPROMSIZE 32768 // size in bytes

// Synthesizer fine tune modes
#define DISABLEDFINEMODE 0 // 1 MHz tuning steps, PLL implementation
#define PLLFINEMONDE 1 // 25 kHz tuning steps, PLL implementation
#define DDSFINEMODE 2 // 1 Hz tuning steps, DDS implementation

// Define error codes
#define SUCCESS 0
#define DEVICEERROR -1
#define DATAERROR -2
#define INPUTNULL -3
#define COMMERROR -4
#define INPUTNOTALLOC -5
#define EEPROMOUTBOUNDS -6
#define INVALIDARGUMENT -7
#define INPUTOUTRANGE -8
#define NOREFWHENLOCK -9
#define NORESOURCEFOUND -10
#define INVALIDCOMMAND -11

// Define device registers
#define INITIALIZE 0x01 // initialize the device
#define SET_SYSTEM_ACTIVE 0x02 // set the device “active” LED
#define DEVICE_STANDBY 0x05 // place the device into standby mode
#define RF_FREQUENCY 0x10 // set the frequency
#define RF_POWER 0x11 // set the power level of the RF output
#define SYNTH_MODE 0x12 // synth mode control
#define RF_ALC_MODE 0x13 // closed or open loop ALC mode
#define SET_ALC_DAC_VALUE 0x14 // set the RF ALC DAC value
#define REFERENCE_MODE 0x15 // reference clock settings
#define REFERENCE_DAC_SETTING 0x16 // set reference clock DAC
#define GET_DEVICE_STATUS 0x17 // read the device status
#define GET_TEMPERATURE 0x18 // get the internal temperature of he device
#define CAL_EEPROM_READ 0x20 // read a byte from the calibration EEPROM
#define CAL_EEPROM_WRITE 0x21 // cal EEPROM write (not accessible)
#define USER_EEPROM_READ 0x22 // read a byte from the user EEPROM
#define USER_EEPROM_WRITE 0x23 // write a byte to the user EEPROM
#define RF_OUT_ENABLE 0x26 // enable RF output
#define STORE_STARTUP_STATE 0x28 // store new default state
#define AUTO_POWER_DISABLE 0x29 // disable auto power leveling

Type Definitions

typedef struct deviceInfo_t
{
 unsigned int productSerialNumber;
 unsigned int rfModuleSerialNumber;
 float firmwareRevision;
 float synthHardwareRevision;
 float signalHardwareRevision;
 unsigned int calDate; // year, month, day, hour:&(0xFF000000,0x00FF0000,

0x0000FF00,0x000000FF)
 unsigned int manDate; // year, month, day, hour:&(0xFF000000,0x00FF0000,

0x0000FF00,0x000000FF)
} deviceInfo_t;

SC5503B Operating & Programming Manual Rev 1.1 23

typedef struct deviceStatus_t
{
 bool tcxoPllLock; // Master 10 MHz TCXO
 bool vcxoPllLock; // 100 MHz VCXO
 bool finePllLock; // Fine Tuning PLL
 bool coarsePllLock; // Coarse tuning PLL
 bool sumPllLock; // Main tuning PLL
 bool extRefDetected; // Indicates whether an external source is detected
 bool refClkOutEnable; // Indicates if the reference output port is enabled
 bool extRefLockEnable; // Indicates if the TCXO lock is enabled
 bool alcOpen; // Indicates that the ALC is in open loop
 bool fastTuneEnable; // Indicates if tuning mode is enabled
 bool standbyEnable; // Power down of analog circuit
 bool rfEnable; // RF port is enabled
 bool pxiClkEnable; // Only used in PXIe platform
} deviceStatus_t;

Function Definitions and Usage

The functions listed below are found in the SC5503B.dll dynamic linked library for the WindowsTM

operating system. These functions are also provided in the LabView library, SC5503B.llb. The LabView

functions contain context help (Cntrl-H) to help with the input and output parameters.

Function: SC5503B_SearchDevices

Definition: int SC5503B_SearchDevices(char **serialNumberList)

Output: char **serialNumberList (2-D array pointer list)

Description: SC5503B_SearchDevices searches for SignalCore SC5503B devices connected to the host

computer and returns (int) the number of devices found, and it also populates the char

array with their serial numbers. The user can use this information to open specific

device(s) based on their unique serial numbers. See SC5503B_OpenDevice function on

how to open a device.

Function: SC5503B_OpenDevice

Definition: deviceHandle *SC5503B_OpenDevice(char *devSerialNum)

Input: char * devSerialNum (serial number string)

Return: *deviceHandle (unsigned int number for the deviceHandle)

Description: SC5503B_OpenDevice opens the device and turns the front panel “active” LED on if it is

successful. It returns a handle to the device for other function calls.

Function: SC5503B_CloseDevice

Definition: int SC5503B_CloseDevice(deviceHandle *devHandle)

Input: deviceHandle *devHandle (handle to the device to be closed)

Description: SC5503B_CloseDevice closes the device associated with the device handle and turns off

the “active” LED on the front panel if it is successful.

Example: Code to exercise the functions that open and and close the device:

SC5503B Operating & Programming Manual Rev 1.1 24

// Declaring
devicehandle *devHandle; //device handle
int numOfDevices; // the number of device types found
char **deviceList; // 2D to hold serial numbers of the devices found
int status; // status reporting of functions

deviceList = (char**)malloc(sizeof(char*)*MAXDEVICES); // MAXDEVICES serial numbers to
search
for (i=0;i<MAXDEVICES; i++)
 deviceList[i] = (char*)malloc(sizeof(char)*SCI_SN_LENGTH); // SCI SN has 8 char

numOfDevices = SC5503B_SearchDevices(deviceList); //searches for SCI for device type
if (numOfDevices == 0)
{
 printf("No signal core devices found or cannot not obtain serial numbers\n");
 for(i = 0; i<MAXDEVICES;i++) free(deviceList[i]);
 free(deviceList);
 return 1;
}
printf("\n There are %d SignalCore %s USB devices found. \n \n", numOfDevices,
SCI_PRODUCT_NAME);
 i = 0;
 while (i < numOfDevices)
 {
 printf(" Device %d has Serial Number: %s \n", i+1, deviceList[i]);
 i++;
 }
//** SC5503B_OpenDevice, open device 0
devHandle = SC5503B_OpenDevice(deviceList[0]);
// Free memory
 for(i = 0; i<MAXDEVICES;i++) free(deviceList[i]);
 free(deviceList); // Done with the deviceList
 //
// Do something with the device
// Close the device
status = SC5503B_CloseDevice(devHandle);

SC5503B Operating & Programming Manual Rev 1.1 25

Function: SC5503B_RegWrite

Definition: int SC5503B_RegWrite(deviceHandle *devHandle, unsigned char commandByte,

 unsigned long long int instructWord)

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned char commandByte (register address)

 unsigned long long int instructWord (the data for the register)

Description: SC5503B_RegWrite writes the instructWord data to the register specified by the

commandByte. See the register map on Error! Reference source not found. for more i

nformation.

Example: To set the power level to 2.00 dBm:

Function: SC5503B_RegRead

Definition: int SC5503B_RegRead(deviceHandle *devHandle, unsigned char commandByte,

 unsigned long long int instructWord, unsigned int *receivedWord)

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned char commandByte (the address byte of the register to write to)

 unsigned long long int instructWord (the data for the register)

 unsigned int *receivedWord (data to be received)

Description: SC5503B_RegRead reads the data requested by the instructWord data to the register

specified by the commandByte. See the register map on Table 3 for more information.

Example: To read the status of the device:

Function: SC5503B_InitDevice

Definition: int SC5503B_InitDevice(deviceHandle *devHandle, bool mode)

Input: deviceHandle *devHandle (handle to the opened device)

 bool mode (set the mode of initialization)

Description: SC5503B_InitDevice initializes (resets) the device. Mode = 0 resets the device to the

default power up state. Mode = 1 resets the device but leaves it in its current state.

Function: SC5503B_SetStandby

Definition: int SC5503B_SetStandby(deviceHandle *devHandle, bool standbyStatus)

Input: deviceHandle *devHandle (handle to the opened device)

 bool standbyStatus (set to true (1) to set device in standby mode)

Description: SC5503B_SetStandby puts a channel in standby mode where the power to the analog

circuits for that channel are disabled, conserving power.

unsigned int deviceStatus;

int status = SC5503B_RegRead(devHandle,
GET_DEVICE_STATUS,0x00,&deviceStatus);

int status = SC5503B_RegWrite(devHandle, RF_POWER, 200);

SC5503B Operating & Programming Manual Rev 1.1 26

Function: SC5503B_SetFrequency

Definition: int SC5503B_SetFrequency(deviceHandle *devHandle,

 unsigned long long int frequency)

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned long long int frequency (frequency in Hz)

Description: SC5503B_SetFrequency sets the channel RF frequency.

Function: SC5503B_SetPowerLevel

Definition: int SC5503B_SetPowerLevel(deviceHandle *devHandle, float powerLevel)

Input: deviceHandle *devHandle (handle to the opened device)

 float powerLevel (set power in dBm)

Description: SC5503B_SetPowerLevel sets the value of the desired output power level for the

channel.

Function: SC5503B_SetRfOut

Definition: int SC5503B_SetRfOut(deviceHandle *devHandle, bool mode)

Input: deviceHandle *devHandle (handle to the opened device)

 bool mode (disable/enable RF output)

Description: SC5503B_SetRfOut enables or disables the RF output on a channel.

Function: SC5503B_SetAlcMode

Definition: int SC5503B_SetAlcMode(deviceHandle *devHandle, bool mode)

Input: deviceHandle *devHandle (handle to the opened device)

 bool mode (closed or open loop operation of the ALC circuit)

Description: SC5503B_SetAlcMode sets the ALC loop to closed or open loop operation for a channel.

Definition: int SC5503B_SetAlcDac(deviceHandle *devHandle, unsigned int dacValue)

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int dacValue (14 bit value for adjusting the ALC DAC)

Description: SC5503B_SetAlcDac writes a value to the ALC DAC to control the RF output level for a

channel.

Function: SC5503B_SetSynthesizerMode

Definition: int SC5503B_SetSynthesizerMode(deviceHandle *devHandle,

 bool fastTuneEnable, unsigned int fineTuneMode)

Input: deviceHandle *devHandle (handle to the opened device)

 bool fastTuneEnable (enable/disable faster frequency stepping)

 unsigned int fineTuneMode (selects 1 MHz, 25 kHz, or 1 Hz tuning step resolution)

SC5503B Operating & Programming Manual Rev 1.1 27

Description: SC5503B_SetSynthesizerMode enables/disables fast tuning and sets the step resolution

of the device.

Function: SC5503B_SetReferenceClock

Definition: int SC5503B_SetReferenceClock(deviceHandle *devHandle, bool lockExtEnable,

 bool refOutEnable, bool clk100Enable)

Input: deviceHandle *devHandle (handle to the opened device)

 bool lockExtEnable (enables phase locking to an external source)

 bool refOutEnable (enables the internal clock to be exported on the “ref out” port)

 bool clk100Enable (choose 100 MHz to export instead of 10 MHz)

Description: SC5503B_SetReferenceClock configures the reference clock behavior of the device.

Function: SC5503B_SetReferenceDac

Definition: int SC5503B_SetReferenceDac(deviceHandle *devHandle, unsigned int dacValue)

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int dacValue (14bit value for the reference DAC)

Description: SC5503B_SetReferenceDac set the value of the DAC that tunes the internal reference

TXCO. The user may choose to override the value stored in memory for example, to

correct for long-term accuracy drift.

Function: SC5503B_WriteUserEeprom

Definition: int SC5503B_WriteUserEeprom(deviceHandle *devHandle, unsigned int memAdd,

 unsigned char byteData)

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int memAdd (memory address to write to)

 unsigned char byteData (byte to be written to the address)

Description: SC5503B_WriteUserEeprom writes one byte of data to the memory address specified.

Function: SC5503B_StoreCurrentState

Definition: int SC5503B_StoreCurrentState(deviceHandle *devHandle)

Input: deviceHandle *devHandle (handle to the opened device)

Description: SC5503B_StoreCurrentState stores the current state of the devices as the default

power-up state.

Function: SC5503B_DisableAutoLevel

Definition: int SC5503B_DisableAutoLevel(deviceHandle *devHandle, bool mode)

Input: deviceHandle *devHandle (handle to the opened device)

 bool mode (defines when to disable auto-level)

Description: SC5503B_DisableAutoLevel disables the device from auto adjusting the power level to

the current state when frequency is changed. Disabling the auto adjust feature allows

SC5503B Operating & Programming Manual Rev 1.1 28

the device to return faster after calling SC5503B_SetPowerLevel. If the power remains

the same for the next tuned frequency, this should not be disabled.

Function: SC5503B_GetDeviceInfo

Definition: int SC5503B_GetDeviceInfo(deviceHandle *devHandle, deviceInfo_t *devInfo)

Input: deviceHandle *devHandle (handle to the opened device)

Output: deviceInfo_t *devInfo (device info struct)

Description: SC5503B_GetDeviceInfo retrieves device information such as serial number, calibration

date, revisions, etc.

Function: SC5503B_GetDeviceStatus

Definition: int SC5503B_GetDeviceStatus(deviceHandle *devHandle,

 deviceStatus_t *deviceStatus)

Input: deviceHandle *devHandle (handle to the opened device)

Output: deviceStatus_t *deviceStatus (deviceStatus struct)

Description: SC5503B_GetDeviceStatus retrieves the status of the device such as phase lock status

and current device settings.

Example: Code showing how to use this function:

Function: SC5503B_GetTemperature

Definition: int SC5503B_GetTemperature(deviceHandle *devHandle, float *temperature)

Input: deviceHandle *devHandle (handle to the opened device)

Output: float *temperature (temperature in degrees Celsius)

Description: SC5503B_GetTemperature retrieves the internal temperature of the device.

Function: SC5503B_GetAlcDac

Definition: int SC5503B_GetAlcDac(deviceHandle *devHandle, unsigned int *dacValue)

Input: deviceHandle *devHandle (handle to the opened device)

Output: unsigned char *dacValue (the read back byte data)

Description: SC5503B_GetAlcDac reads back the current ALC DAC value.

deviceStatus_t *devStatus;
devStatus = (deviceStatus_t*)malloc(sizeof(deviceStatus_t));

int status = SC5503B_GetDeviceStatus(devHandle, devStatus);

if(devStatus->vcxoPllLock)
printf("The 100 MHz is phase-locked \n");
else
printf("The 100 MHz is not phase-locked \n");

free(deviceStatus);

SC5503B Operating & Programming Manual Rev 1.1 29

Function: SC5503B_ReadCalEeprom

Definition: int SC5503B_ReadCalEeprom(deviceHandle *devHandle, unsigned int memAdd,

 unsigned char *byteData)

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int memAdd (EEPROM memory address)

Output: unsigned char *byteData (the read back byte data)

Description: SC5503B_ReadCalEeprom reads back a byte from a specific memory address of the

calibration EEPROM.

Function: SC5503B_ReadUserEeprom

Definition: int SC5503B_ReadUserEeprom(deviceHandle *devHandle, unsigned int memAdd,

 unsigned char *byteData)

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int memAdd (EEPROM memory address)

Output: unsigned char *byteData (the read back byte data)

Description: SC5503B_ReadUserEeprom reads back a byte from a specific memory address of the

user EEPROM.

SC5503B Operating & Programming Manual Rev 1.1 30

P R O G R A M M I N G T H E R S 2 3 2 I N T E R F A C E

Function Definitions and Usage of the RS232 API

The driver functions to access the device through the RS232 port are written upon NI-VISA, so NI-VISA

must be installed to use them. There is no separate installer (.inf file) requirement as NI-VISA contains

the RS232 protocol. The driver functions are provided as a DLL which can be called from C/C++, BASIC,

LabVIEW, etc. The LabVIEW functions provided are simply wrappers of this DLL.

The functions are near identical to the USB set with the exception that SC5503B_SearchDevices is not

provided, and the SC5503B_OpenDevice returns the device handle differently; see the rs232 header file

for more information. Also, refer to the USB function descriptions for details on function usage. The

device handle is defined as an unsigned integer and is passed into the function as a pointer in the RS232

implementation, which differs from the USB version where the device handle is a return type of

deviceHandle. Furthermore, the baud rate must be passed into the function at this point. The device

supports 2 baud rates: 57600 and 115200. The baud rate for the device must be set at power up or on

hardware reset of the device through pin 23 of the communication I/O connector. This pin is defaulted

to logic high, which set the baud rate at 57600. Pulling this pin to logic low will set the rate at 115200.

Function: SC5503B_OpenDevice

Definition: int *SC5503B_OpenDevice(char *visaResource, unsigned int baudrate,

unsigned int *deviceHandle)

Return: int (status)

Output: char *visaResource (resource name such as “COM1”)

 unsigned int baudrate (sets the host to the baudrate of the device)

Output: unsigned int* deviceHandle (deviceHandle)

Description: SC5503B_OpenDevice opens the device and turns on the front panel “active” LED if

successful. This function returns a handle to the device for other function calls.

Addressing the RS232 Registers Directly

When the user uses the supplied API, data sent and returned is appropriately handled and the user gets

the proper end result. However, if the user chooses to read and write to the RS232 registers directly, the

following information and the register descriptions in the USB section are needed.

The device with the RS232 option has a standard interface buffered by an RS232 transceiver, so that it

may interface directly with many host devices such as a desktop computer The interface is provide

through the communication I/O connector; refer to

SC5503B Operating & Programming Manual Rev 1.1 31

 and item 3 for position and pin-out information. The device communication control is provided in Table

6 below.

Table 6. RS232 communication settings

Baud rate Rate of transmission. Pin 12 of the Digital IO connector selects the rate. By

default if the pin is pulled high or open, the rate is set 56700 at power up or

upon HW reset. When the pin is pulled low (jumper to pin 11) or grounding it,

the rate is set to 115200.

Data bits The number of bits in the data is fixed at 8.

Parity Parity is 0 (zero)

Stop bits 1 stop bit

Flow control 0 or none

Writing to the device via RS232

It is important that all necessary bytes associated with any one register are fully sent, in other words, if

a register requires a total of 4 bytes (address plus data) then all 4 bytes must be sent even though the

last byte may be a null. The device upon receiving the first register addressing byte will wait for all the

data bytes associated with it before acting on the register instruction. Failure to complete the register

transmission will cause the device to behave erratically or hang. Information for the configuration or

write-to registers is given in Table 2.

When the device receives all the information for a register and finishes performing its instruction, it will

return a byte back to the host. Querying this return byte ensures that the prior configuration command

has been successfully executed and the device is ready for the next register command. It is important to

clear the incoming RX buffer on the host by querying it or force flushing it to avoid in-coming data

corruption of querying registers. The return byte value is 1 on success and 0 on an unsuccessful

configuration.

Reading from the device via RS232

To query information from the device, the query registers are addressed and data is returned. The

returned RS232 data length for querying registers is always 2 bytes, however valid returned data

depends on the queried register; Table 3 contains the query register information. As with the

configuration registers, it is important that the data byte(s) associated with the query registers are sent

even if they are nulls. Data is returned MSB first. The returned valid data length is also detailed below in

Table 7. Note that temperature is returned as a digital code so please refer to the Reading Temperature

Data section for information to convert it to a floating number in degrees Celsius.

Table 7 Valid returned data

REGISTER BYTE 1 BYTE 0

SC5503B Operating & Programming Manual Rev 1.1 32

GET_DEVICE_STATUS (0x17) valid valid
GET_TEMPERATURE (0x18) valid valid
READ_CAL_EEPROM (0x20) non-valid valid
READ_USER_EEPROM (0x22) non-valid valid
GET_ALC_DAC_VALUE (0x2A) valid valid

SC5503B Operating & Programming Manual Rev 1.1 33

C A L I B R A T I O N & M A I N T E N A N C E

The SC5503B is factory calibrated and ships with a certificate of calibration. SignalCore strongly

recommends that the SC5503B be returned for factory calibration every 12 months or whenever a

problem is suspected. The specific calibration interval is left to the end user and is dependent upon the

accuracy required for a particular application.

SC5503B calibration data is stored in the RF module (metal housing). Therefore, changing or replacing

interface adapters will not affect unit calibration. However, SignalCore maintains a calibration data

archive of all units shipped. Archiving this data is important should a customer need to reload calibration

data into their device for any reason. SignalCore also uses the archived data for comparative analysis

when units are returned for calibration.

Should any customer need to reload calibration data for their SC5503B, SignalCore offers free support

through support@signalcore.com. SignalCore will provide a copy of the archived calibration data along

with instructions on how to upload the file to the SC5503B.

The SC5503B requires no scheduled preventative maintenance other than maintaining clean, reliable

connections to the device as mentioned in the “Getting Started” section of this manual. There are no

serviceable parts or hardware adjustments that can be made by the user.

mailto:support@signalcore.com

SC5503B Operating & Programming Manual Rev 1.1 34

R E V I S I O N N O T E S

Rev 1.0 Original Document

Rev 1.1 Removed Old Address

