

SC5413A
400 MHz to 6 GHz IQ Modulator
USB, SPI and RS-232 Interface

Operating & Programming Manual

© 2013 - 2020 SignalCore, Inc.
 support@signalcore.com

SC5413A Operating & Programming Manual i

C O N T E N T S

Important Information 1

Warranty 1

Copyright & Trademarks 1

International Materials Declarations 2

CE European Union EMC & Safety Compliance Declaration 2

Warnings Regarding Use of SignalCore Products 3

Getting Started 4

Unpacking 4

Verifying the Contents of your Shipment 4

Setting Up and Configuring the SC5413A 4

SC5413A Theory of Operation 8

Overview 8

IF Input Section 8

RF Output Section 9

LO Input Section 11

SC5413A Programming Interface 12

Device Drivers 12

Using the Application Programming Interface (API) 12

Setting the SC5413A: Writing to Configuration Registers 13

Configuration Registers 13

Initializing the Device 14

Setting the System Active LED 14

Setting the RF Frequency 14

Setting RF Input RF Amplifiers 14

Setting the RF Attenuation 14

Setting the RF Path 14

Selecting the RF Filter 14

Selecting the LO Filter 15

SC5413A Operating & Programming Manual ii

Enabling LO Output 15

Removing DC Offset in Differential Amplifiers 15

Setting the Output Linearity of the IQ Modulator 15

Storing the Startup State 15

Writing to the User EEPROM 15

Querying the SC5413A: Writing to Request Registers 16

Reading the Device Temperature 16

Reading the Device Status 17

Reading the User EEPROM 17

Reading the Calibration EEPROM 17

Calibration EEPROM Map 18

Software API Library Functions 19

Constants Definitions 20

Type Definitions 21

Function Definitions and Usage 21

Programming the Serial Peripheral Interface 28

The SPI Architecture: 28

Additional SPI registers 29

Writing the SPI Bus 29

Reading the SPI Bus 30

Programming the RS-232 Interface 30

Writing to the Device via RS-232 31

Reading from the Device via RS-232 31

RS232 WindowsTM API 32

Using the LabVIEW Functions and NI-VISA 32

Calibration & Maintenance 33

Revision Notes 1

SC5413A Operating & Programming Manual Rev 1.3.0 1

I M P O R T A N T I N F O R M A T I O N

Warranty

This product is warranted against defects in materials and workmanship for a period of three years from
the date of shipment. SignalCore will, at its option, repair or replace equipment that proves to be
defective during the warranty period. This warranty includes parts and labor.

Before any equipment will be accepted for warranty repair or replacement, a Return Material
Authorization (RMA) number must be obtained from a SignalCore customer service representative and
clearly marked on the outside of the return package. SignalCore will pay all shipping costs relating to
warranty repair or replacement.

SignalCore strives to make the information in this document as accurate as possible. The document has

been carefully reviewed for technical and typographic accuracy. In the event that technical or

typographical errors exist, SignalCore reserves the right to make changes to subsequent editions of this

document without prior notice to possessors of this edition. Please contact SignalCore if errors are

suspected. In no event shall SignalCore be liable for any damages arising out of or related to this

document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, SIGNALCORE, INCORPORATED MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR

NEGLIGENCE ON THE PART OF SIGNALCORE, INCORPORATED SHALL BE LIMITED TO THE AMOUNT

THERETOFORE PAID BY THE CUSTOMER. SIGNALCORE, INCORPORATED WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the

liability of SignalCore, Incorporated will apply regardless of the form of action, whether in contract or

tort, including negligence. Any action against SignalCore, Incorporated must be brought within one year

after the cause of action accrues. SignalCore, Incorporated shall not be liable for any delay in

performance due to causes beyond its reasonable control. The warranty provided herein does not cover

damages, defects, malfunctions, or service failures caused by owner’s failure to follow SignalCore,

Incorporated’s installation, operation, or maintenance instructions; owner’s modification of the product;

owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of

third parties, or other events outside reasonable control.

Copyright & Trademarks

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic

or mechanical, including photocopying, recording, storing in an information retrieval system, or

translating, in whole or in part, without the prior written consent of SignalCore, Incorporated.

SignalCore, Incorporated respects the intellectual property rights of others, and we ask those who use

our products to do the same. Our products are protected by copyright and other intellectual property

laws. Use of SignalCore products is restricted to applications that do not infringe on the intellectual

property rights of others.

SC5413A Operating & Programming Manual Rev 1.3.0 2

 “SignalCore”, “signalcore.com”, and the phrase “preserving signal integrity” are registered trademarks

of SignalCore, Incorporated. Other product and company names mentioned herein are trademarks or

trade names of their respective companies.

International Materials Declarations

SignalCore, Incorporated uses a fully RoHS compliant manufacturing process for our products.

Therefore, SignalCore hereby declares that its products do not contain restricted materials as defined by

European Union directive 2002/95/EC (EU RoHS) in any amounts higher than limits stated in the

directive. This statement is based on the assumption of reliable information and data provided by our

component suppliers and may not have been independently verified through other means. For products

sold into China, we also comply with the “Administrative Measure on the Control of Pollution Caused by

Electronic Information Products” (China RoHS). In the current stage of this legislation, the content of six

hazardous materials must be explicitly declared. Each of those materials, and the categorical amount

present in our products, are shown below:

組成名稱

Model Name

鉛

Lead

(Pb)

汞

Mercury

(Hg)

镉

Cadmium

(Cd)

六价铬

Hexavalent

Chromium

(Cr(VI))

多溴联苯

Polybrominated

biphenyls

(PBB)

多溴二苯醚

Polybrominated

diphenyl ethers

(PBDE)

SC5413A ✓ ✓ ✓ ✓ ✓ ✓

A ✓ indicates that the hazardous substance contained in all of the homogeneous materials for this

product is below the limit requirement in SJ/T11363-2006. An X indicates that the particular hazardous

substance contained in at least one of the homogeneous materials used for this product is above the

limit requirement in SJ/T11363-2006.

CE European Union EMC & Safety Compliance Declaration

The European Conformity (CE) marking is affixed to products with input of 50 - 1,000 Vac or 75 - 1,500

Vdc and/or for products which may cause or be affected by electromagnetic disturbance. The CE

marking symbolizes conformity of the product with the applicable requirements. CE compliance is a

manufacturer’s self-declaration allowing products to circulate freely within the European Union (EU).

SignalCore products meet the essential requirements of Directives 2004/108/EC (EMC) and 2006/95/EC

(product safety), and comply with the relevant standards. Standards for Measurement, Control and

Laboratory Equipment include EN 61326 and EN 55011 for EMC, and EN 61010-1 for product safety.

SC5413A Operating & Programming Manual Rev 1.3.0 3

Warnings Regarding Use of SignalCore Products

(1)
PRODUCTS FOR SALE BY SIGNALCORE, INCORPORATED ARE NOT DESIGNED WITH COMPONENTS NOR TESTED FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT
SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2)

IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE
FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS,
COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN
APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF
ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE),
UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS
THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A
RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE SOLELY RELIANT
UPON ANY ONE COMPONENT DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR
APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT
LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM
SIGNALCORE' TESTING PLATFORMS, AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE SIGNALCORE PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY SIGNALCORE, THE USER OR
APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF SIGNALCORE PRODUCTS
WHENEVER SIGNALCORE PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE
APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

SC5413A Operating & Programming Manual Rev 1.3.0 4

• Ground yourself using a grounding strap or by touching a grounded metal object.

• Touch the antistatic bag to a grounded metal object before removing the hardware

from its packaging.

• Never touch exposed signal pins. Due to the inherent performance degradation

caused by ESD protection circuits in the RF path, the device has minimal ESD

protection against direct injection of ESD into the RF signal pins.

• When not in use, store all SignalCore products in their original antistatic bags.

G E T T I N G S T A R T E D

Unpacking

All SignalCore products ship in antistatic packaging (bags) to prevent damage from electrostatic

discharge (ESD). Under certain conditions, an ESD event can instantly and permanently damage several

of the components found in SignalCore products. Therefore, to avoid damage when handling any

SignalCore hardware, you must take the following precautions:

Remove the product from its packaging and inspect it for loose components or any signs of damage.

Notify SignalCore immediately if the product appears damaged in any way.

Verifying the Contents of your Shipment

Verify that your SC5413A kit contains the following items:

Quantity Item

1 SC5413A IQ Modulator

1 Installation Software

1 Getting Started Guide

Setting Up and Configuring the SC5413A

The SC5413A is a core module-based IQ modulator with all user I/O located on the front face of the

module as shown in Figure 1. Each location is discussed in further detail below.

Figure 1. Front view of the SC5413A showing user I/O locations.

!

SC5413A Operating & Programming Manual Rev 1.3.0 5

Power Connection

Power is provided to the device through a two-position screw terminal block connection as shown in

Figure 1. Proper operation of the device requires +12 VDC source and ground return wires capable of

delivering a minimum current of 1.5 Amps. The polarity of the connector is shown on the front panel of

the RF module, just above the screw terminal block.

RF Signal Connections

All RF signal connections (ports) on the SC5413A are SMA-type. Exercise caution when fastening cables

to the signal connections. Over-tightening any connection can cause permanent damage to the device.

The condition of your system‘s signal connections can significantly affect measurement

accuracy and repeatability. Improperly mated connections or dirty, damaged or worn

connectors can degrade measurement performance. Clean out any loose, dry debris from

connectors with clean, low-pressure air (available in spray cans from office supply stores).

If deeper cleaning is necessary, use lint-free swabs and isopropyl alcohol to gently clean

inside the connector barrel and the external threads. Do not mate connectors until the

alcohol has completely evaporated. Excess liquid alcohol trapped inside the connector may

take several days to fully evaporate and may degrade measurement performance until fully

evaporated.

Tighten all SMA connections to 5 in-lb max (56 N-cm max)

LO OUT This port outputs the tunable LO signal allowing phase-coherent daisy-

chaining of multiple IQ demodulator modules. The connector is SMA female.

The nominal output impedance is 50 Ω.

RF OUT This is the main 400MHz to 6 GHz RF signal output port. The connector is

SMA female. The nominal output impedance is 50 Ω.

RF AUX OUT This is the 400 MHz to 6 GHz RF auxiliary output port. This port can be used

as an alternate path for system-level calibration. The connector is SMA

female. The nominal output impedance is 50 Ω.

LO IN This port accepts a tunable LO signal from an external source to drive the

modulator. The connector is SMA female. This port is AC-coupled with a

nominal input impedance of 50 Ω. Maximum input power is +10 dBm.

!

!

SC5413A Operating & Programming Manual Rev 1.3.0 6

Baseband Connections

The SC5413A has four baseband input ports, comprised of differential in-phase (I+ and I-) and

differential quadrature (Q+ and Q-) inputs. Nominal differential input impedance is 100 Ω. The

modulator can also be configured for single-ended or differential IF input. When configured for single-

ended operation, it is recommended to terminate the other half of the differential pair using a 50 Ω

terminator. All baseband connectors are MCX female.

Communication Connections

The SC5413A uses a mini-USB Type B connector for primary communication with the device using the

standard USB 2.0 protocol found on most host computers. The pinout of this connector, viewed from

the front of the module, is listed in Table 1.

Table 1. Pinout of the SC5413A USB communication connector.

Pin Number USB Function Description

1 VBUS Vcc (+5 Volts)

2 D - Serial data

3 D + Serial data

4 ID Not used

5 GND Device ground (also tied to connector shell)

The user can also communicate with the device through the micro-HDMI port. Depending on the

product version ordered, this connector provides either the SPI or RS-232 communication path. The

pinout of this connector, viewed from the front of the module, is listed in Table 2.

Table 2. Pinout of the SC5413A micro-HDMI connector for either SPI or RS-232 communication.

Pin Number SPI Function RS-232 Function
3 MISO TxD

5 – –

9 MOSI RxD

11 CS –

1 SRDY –

17 CLK –

18 SPI_MODE BAUD SELECT

4, 7, 10, 13, 16 GND GND

2, 8, 12, 14, 15, 19 DNC DNC

SC5413A Operating & Programming Manual Rev 1.3.0 7

Reset Button

Depressing this momentary-action push button switch will reset the device to its default state. The

SC5413A has the ability to store the current configuration at any point as the default setting. If the

factory setting has been overwritten with a saved user configuration, resetting the device will reinitialize

the device to the saved user configuration.

Indicator LED

The SC5413A provides visual indication of important modes. There one LED indicator on the unit. Its

behavior under different operating conditions is shown in Table 2.

Table 2. LED indicator states.

LED Color Definition

ACTIVE Orange Device is powered on and working properly.

ACTIVE Green
Device is open (communication has been established). This
indicator is also user programmable. See register map.

ACTIVE Off Power fault. Contact SignalCore.

SC5413A Operating & Programming Manual Rev 1.3.0 8

S C 5 4 1 3 A T H E O R Y O F O P E R A T I O N

Overview

The SC5413A is a single-stage, direct conversion Inphase-Quadrature (IQ) modulator. The modulator

operates in the 400 MHz to 6 GHz RF range with a typical 3 dB IQ IF bandwidth of 320 MHz. IF signals are

conditioned by input differential drivers prior to the IQ mixers. These differential drivers adjust the DC

level and minimize the DC offset effects on the modulated RF signal. The RF output stage has adjustable

gain to allow the user to adjust the signal levels, and also to optimize for signal dynamic range. The

SC5413A has the necessary RF amplifiers, attenuators and IF amplifiers to give the user optimal control

of the device over the entire frequency range. Figure 3 shows a simplified block diagram of the SC5413A,

showing only the signal conditioning components critical for the following discussion. The following

sections provide more in-depth discussion on how to optimize the converter for linearity and signal-

noise dynamic range. Power supply generation and regulation, and digital control functions are not

covered. Should the user require more information than what is provided in this manual, please contact

SignalCore.

IF Input Section

The IF inputs are typically driven differentially, however they may also be driven single-ended. The IF

input is DC coupled with a differential impedance of 100 . Singled-ended operation is recommended

for AC-coupled operation due to the fact that DC-coupled single-ended operation may cause large DC

offsets at the input driver amplifier that the DC offset compensation may not be about to overcome. A

large DC offset will lead to high LO leakage, so unless the DC points of the differential inputs are bias the

same, AC coupling is recommended for single-end operation. For differential DC-coupled input it is

recommended to drive the common mode input voltage between 1.5 V to 2.5 V for best linearity

performance. See Figure 2 for details of the input section.

From Figure 3, the IF signals are first filtered by a 160 MHz filter, and then passed to the input

differential drivers before being driven into the IQ mixers. The DC characteristics of the output of each

differential driver are controlled by two 14 bit DACs. One DAC controls the driver common output

voltage, while a separate DAC controls the DC offset of the differential output pair. The common output

voltage has a range from 0V to 2.5V (DAC code 0 to 16383), and a differential voltage range of -50 mV to

+50 mV (DAC code 0 to 16383, mid code is 0V). The common output voltage controls the bias to the

mixer inputs, which affects the mixer linearity. The user may need to adjust this voltage to optimize

linearity (IP3 and harmonics), which is dependent on IF input power level and the operating frequency. A

typical bias voltage may range between 1 V and 3 V.

DC offset to the differential modulating mixer is controlled using the DC offset DAC. This DAC provides

approximately -50 mV to +50 mV of differential voltage adjustment. Adjusting the DAC offset on both

the I and Q channels can minimize the LO leakage at the RF output. This is commonly known as “nulling”

out the LO. The process typically involves a few adjustment steps alternating between the I-Channel DAC

and the Q-Channel DAC until an optimal level of LO suppression is achieved. However, nulling of the LO

is typically only effective over a small amplitude, frequency, and temperature range. Once the operating

condition changes significantly, nulling may need to be performed again. For example, if the LO is nulled

SC5413A Operating & Programming Manual Rev 1.3.0 9

at 25 OC, then it will most likely need to be nulled again at 45 OC although the frequency and input

amplitude is held relatively constant. Digital data must be corrected to compensate for the modulator IQ

amplitude and phase imbalances in addition to nulling out the LO leakage for best application results.

The IQ core, comprising two mixers driven at LO quadrature signals, should not be driven too hard with

IF signals because the resulting IMD3 of the RF signal may be too high. It is recommended to use an IF

level of 0.5 V peak-to-peak differential or less to lower the IMD3. However if the IF is too low, the RF

signal-to-noise ratio may suffer. Subsequently, the user must look at the RF result to determine the

optimal IF input level.

RF Output Section

The output section comprises adjustable digital step attenuators (DSA), RF amplifiers (one is selectable),

and a bank of low pass filters to suppress RF harmonics. These are used to condition the RF signal

generated in the IQ core component. The RF signal has its best performance exiting the IQ core;

therefore it is important to select a suitable RF gain to minimize further degradation of the signal. A

general rule is to apply more attenuation earlier in the RF path (close to the IQ core) to improve

linearity, and more gain to improve signal-to-noise performance. Generally, for RF frequencies less than

3 GHz, to vary signal levels greater than -20dBm the attenuators RF ATTEN#1, and RF ATTEN#2 should

be used as controls. To lower signal levels below -20 dBm, ATTEN#3 and ATTEN#4 should then be used.

Although all attenuators in the path have 30 dB of adjustment with 1 dB steps, it is not always

recommended to maximize the full range of an attenuator before moving to the next one in the path. As

an example, attenuation of ATTEN#1 should rarely be more than 10 dB because any further attenuation

will degrade the signal-to-noise ratio at a faster rate than the improvement of IMD3. If any further IMD3

improvement is needed, ATTEN#2 or ATTEN#3 should be used to create the desired attenuation.

ATTEN#4 should be fully utilized first to generate signals lower than -30 dBm.

The selectable RF amplifier is used to improve the overall gain of the device for frequencies in the 5 GHz

to 6 GHz range, as the RF loss in the RF path become more significant at these higher frequencies. The

gain flatness roll-off over the entire operating band is typically 15-16 dB. The RF amplifier has 14 dB of

gain. If the overall gain is too excessive at the desired operating frequency, ATTEN#2 should be used to

readjust the gain to the required level.

Vocm

100

100

100

100

Vocm

DAC

200

25

25

100 Input Diff

Impedance

IQ MOD

I
25 to 100

LPF

160 MHz LPF
Differential

Driver

Figure 2. IF input section.

SC5413A Operating & Programming Manual Rev 1.3.0 10

9
0

0

R
F

 A
m

p

#
3

R
F

 A
m

p

(s
e

le
c
ta

b
le

)

9
 S

e
le

c
ta

b
le

R
F

 F
ilte

rs

9
 S

e
le

c
ta

b
le

L
O

 F
ilte

rs

L
O

 A
m

p

#
2

L
O

 A
m

p

#
1

R
F

 A
tte

n

#
1

R
F

 A
tte

n

#
4

R
F

 A
tte

n

#
3

R
F

 A
tte

n

#
2

V
o
c
m

 /

L
in

e
a

r

A
d
ju

s
t

D
A

C

D
C

O
ffs

e
t

D
A

C

IQ
 M

O
D

I

2
.5

V

R
e
f

i+
 (in

)

i- (in
)

5
V

R
e
f

V
o
c
m

V
o
c
m

D
iff

D
riv

e

A
m

p

R
F

 A
m

p

#
2

R
F

R
F

A
u

x

L
OL
O

A
u

x

IF
 (I)

IF
 (Q

)

Figure 3. Simplified SC5413A block diagram.

SC5413A Operating & Programming Manual Rev 1.3.0 11

There are nine low pass filters in the RF filter bank. These filters are automatically selected when the

user enters the operating frequency. These filters can also be selected manually should the user choose

to do so. As with all filters, there is generally an amplitude roll-off as the frequency nears its 3 dB cutoff

point so it is important to understand that frequencies near the cutoff point may experience a slightly

faster roll-off of their IF bandwidth. A typical 1 dB IQ IF bandwidth is about 160 MHz. The user may want

to choose a higher frequency filter if this becomes a problem. See the section

“Setting the SC5412A: Writing to Configuration Registers” for more details. The filters in both the RF and

LO filter banks are identical and are listed below.

Filter Number 1 dB Cutoff Frequency

0 400 MHz

1 500 MHz

2 650 MHz

 3 1000 MHz

4 1400 MHz

5 2000 MHz

6 2825 MHz

7 3800 MHz

8 6000 MHz

LO Input Section

The SC5413A requires an external RF signal as its “Local Oscillator” (LO) for the frequency conversion

process. The external RF signal must be connected to the “LO in” port. The typical required input level is

-3 dBm to 3 dBm. These levels are required to sufficiently drive the IQ demodulator for good linearity

performance and conversion loss. The LO signal is conditioned through a bank of low-pass filters to

reduce the signal harmonics. Reducing the harmonics produces a “purer” signal tone, improving the

duty cycle of the LO as it drives the mixers of the modulator. Additionally, the LO signal can be passed

out of the device via the “LO out” port. This output can be used as the input LO source for another

modulator, for example. Driving multiple modulators (or demodulators when working with SignalCore’s

SC5313A) with the same derived LO signal optimizes phase coherency between them. When this port is

not in use, it is highly recommended to terminate it into a 50 load.

.

SC5413A Operating & Programming Manual Rev 1.3.0 12

S C 5 4 1 3 A P R O G R A M M I N G I N T E R F A C E

Device Drivers

The SC5413A is programmed by writing to its set of configuration registers, and its data is read back

through its set of query registers. The user may program directly at register level or through the API

library functions provided. These API library functions are wrapper functions of the registers that

simplify the task of configuring the register bytes. The register specifics are covered in the next section.

Writing to and reading from the device at the register level through the API involves calls to the

sc5413a_RegWrite and sc5413a_RegRead functions respectively.

For Microsoft WindowsTM operating systems, The SC5413A API is provided as a dynamic linked library,

sc5413a.dll, which is available for 32bit and 64bit operating systems. This API is based on the libusb-1.0

library and therefore it is required to be installed on the system prior to development. The libusb-1.0.dll

will install along with the SC5413A.dll as well as the header files needed for development. Files required

for development are in the \Win\Driver directory. SignalCore makes every effort to bundle the latest

third-party tools in our software installer. Occasionally however, third-party updates may not be

identified and bundled in time for a given product shipment. Therefore, for the latest version of libusb-

1.0, please visit http://libusbx.org. To install the necessary drivers, right click on the sc5413a.inf file

under the \Win directory and select “Install.” After installation is completed, when the device is plugged

into a USB port and powered on, the host computer should identify the device and load the appropriate

driver. For more information, please see the SC5413A_Readme.txt file also located under the \Win

directory.

A LabVIEW API is provided and it consists of function wrappers that call the sc5413a.dll. A LabVIEW API

written in G that uses NI-VISA is also available from the SignalCore website. The National Instruments

driver wizard that is part of NI-VISA can be used to create a driver for most operating systems. For the

SC5413A, the Vendor ID is 0x277C and the PID is 0x0018.

For Linux systems, the shared library libsc5413a.so is provided. To install the shared files and links, type

“make –f makefile.make install” in the /Linux/ directory. The user may need to acquire root privileges to

perform the install operation. Ensure the libsub-1.0.X.dev package for this distribution is installed on the

host computer. For other operating systems, users will need to write and compile their own drivers. The

device register map provides the necessary information to successfully implement a driver for the

SC5413A. Driver code based on libusb-1.0 is available to our customers by request. Should the user

require assistance in writing an appropriate API other than that provided, please contact SignalCore for

additional example code and hardware details.

Using the Application Programming Interface (API)

The SC5413A API library functions make it easy for the user to communicate with the device. Using the

API removes the need to understand register-level details - their configuration, address, data format,

etc. Using the API, commands to control the device are greatly simplified. For example, to obtain the

device temperature, the user simply calls the function sc5413a_GetDeviceTemperature, or calls

sc5413a_SetFrequency to tune the frequency. The software API is covered in detail in the “Software API

Library Functions” section.

http://libusbx.org/

SC5413A Operating & Programming Manual Rev 1.3.0 13

S E T T I N G T H E S C 5 4 1 3 A : W R I T I N G T O

C O N F I G U R A T I O N R E G I S T E R S

Configuration Registers

The users may write the configuration registers (write only) directly by calling the sc5413a_RegWrite

function. The syntax for this function is sc5413a_RegWrite(deviceHandle, registerCommand,

instructWord). The instructWord takes a 64 bit-word. However, it will only send the required number of

bytes to the device. Table 3 summarizes the register addresses (commands) and the effective bytes of

command data.

Table 3. Configuration registers.

Register Name
Register
Address

Serial
Range

Bit 7
(MSB)

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Bit 0
(LSB)

INITIALIZE 0x01 [7:0] Mode

SET_SYSTEM_ACTIVE 0x02 [7:0]

Enable
“active”

LED

RF_FREQUENCY 0x10

[7:0] MHz Frequency Word [7:0]

[15:8] MHz Frequency Word [15:8]

[23:16] MHz Frequency Word [23:16]

[31:24] MHz Frequency Word [31:24]

[39:32] MHz Frequency Word [39:32]

RF_AMPLIFIER 0x12 [7:0] Amplifier Mode

RF_ATTENUATION 0x13
[7:0] Attenuation

[15:8] Atten #

RF_PATH 0x14 [7:0] Path

RF_FILTER_SELECT 0x15 [7:0] Filter [3:0]

LO_FILTER_SELECT 0x16 [7:0] Filter [3:0]

LO_OUT_ENABLE 0x17 [7:0]

Enable
“LO out”

port

DC_OFFSET_DAC 0x1A

[7:0] DAC value [7:0]

[15:8] DAC value [13:8]

[23:16] Channel

LINEARITY_DAC 0x1B

[7:0] DAC value [7:0]

[15:8] DAC value [13:8]

[23:16] Channel

STORE_STARTUP_STATE 0x1D [7:0]

USER_EEPROM_WRITE 0x1F

[7:0] Data [7:0]

[15:8] Address [7:0]

[23:16] Address [15:8]

SC5413A Operating & Programming Manual Rev 1.3.0 14

To write to the device through USB transfers such as bulk transfer, it is important to send the data with

the register byte first, followed by the most significant bit (MSB) of the data bytes. For example, to set

the attenuation value of ATTEN#2, the byte stream would be [0x13][15:8][7:0].

Initializing the Device

INITIALIZE (0x01) - Writing 0x00 to this register will reset the device to the default power-on state.

Writing 0x01 will reset the device but leave it in the current state. The user has the ability to define the

default startup state by writing to the STORE_STARTUP_STATE (0x1D) register, described later in this

section.

Setting the System Active LED

SET_SYSTEM_ACTIVE (0x02) - This register simply turns on the front panel “active” LED with a write of

0x01, or turns off the LED with a write of 0x00. This register is generally written when the device driver

opens or closes the device.

Setting the RF Frequency

RF_FREQUENCY (0x10) - This register provides the device frequency information to set up the filters

appropriately. Data is sent as a 40 bit word with the LSB in Hz.

Setting RF Input RF Amplifiers

RF_AMPLIFIER (0x12) - This register enables or disables the RF amplifier. Setting bit 0 low (0) disables RF

amplifier. Setting bit 0 high (1) enables RF amplifier.

Setting the RF Attenuation

RF_ATTENUATION (0x13) – Each of the attenuators is a 5 bit digital step attenuator with 1 dB per LSB.

Data is sent in 2 bytes; byte1 and bits [1:0] specifies the attenuator to program, 0 = ATTEN#1, and 3 =

ATTEN#4. Byte0 and bit [4:0] specifies the attenuation value of the corresponding attenuator set by

byte1.

Setting the RF Path

RF_PATH (0x14) – Setting bit 0 low selects the main RF input path, while high will select the RF auxiliary

path.

Selecting the RF Filter

RF_FILTER_SELECT (0x15) – There are 9 RF filters to select from to improve RF input second harmonic

suppression. Bits [3:0] are used.

SC5413A Operating & Programming Manual Rev 1.3.0 15

Selecting the LO Filter

LO_FILTER SELECT (0x16) – There are 9 RF filters to select from to improve LO input second harmonic

suppression. Bits [3:0] are used.

Enabling LO Output

LO_OUT_ENABLE (0x17) – Setting bit 0 high enables the LO signal to be ported to the “LO out”

connector. Note that there is always some LO leakage from this port and the levels could be as high as -

30 dBm. It is recommended to terminate this port into a 50 load if it is not used.

Removing DC Offset in Differential Amplifiers

DC_OFFSET_DAC (0x1A) – The DC offsets at the input of the modulator causes LO leakage, adjustment

to both the I & Q channel differential DC offsets can minimize the LO leakage. Varying the DAC value

from 0 to 16383 can correct up to approximately ∓50𝑚𝑉 of DC offset error. This correction resolution is

less than 0.010 mV per LSB. An approximation of the DAC value to offset voltage is given below.

𝐷𝐴𝐶 𝑉𝑎𝑙𝑢𝑒 = 16383 (
𝑉𝑂𝑓𝑓𝑠𝑒𝑡 + 0.05𝑉

0.1𝑉
⁄)

Setting the Output Linearity of the IQ Modulator

LINEARITY_DAC (0x19) – This DAC controls the bias point of the IQ modulator. A typical value for the

bias point is 1.2V, however adjustments are needed to improve linearity at different operating

frequency and input IF power levels. Typically, the DAC is set around 1.2 V using the following equation:

𝐷𝐴𝐶 𝑉𝑎𝑙𝑢𝑒 = 16383 (
𝑉𝑐𝑜𝑚

5𝑉
⁄)

Storing the Startup State

STORE_STARTUP_STATE (0x1D) – Writing to this register will save the current device state as the new

default power on (startup) state. All data written to this register will be ignored as only the write

command is needed to initiate the save.

Writing to the User EEPROM

USER_EEPROM_WRITE (0x1B) - There is an onboard 32 kilobyte EEPROM for the user to store data.

User data is sent one byte at a time and is contained in the last (least significant) byte of the three bytes

of data written to the register. The other two bytes contain the write address in the EEPROM. For

example, to write user data 0x22 into address 0x1F00 requires writing 0x1F0022 to this register.

SC5413A Operating & Programming Manual Rev 1.3.0 16

Q U E R Y I N G T H E S C 5 4 1 3 A : W R I T I N G T O

R E Q U E S T R E G I S T E R S

The registers to read data back from the device (such as device status) are accessed through the

sc5413a_RegRead function. The function and parameter format for this command is

sc5413a_RegRead(deviceHandle, registerCommand, instructWord,*dataOut). Any instructions in

addition to the register call are placed into “instructWord”, and data obtained from the device is

returned via the pointer value dataOut. The set of request registers are shown in Table 4.

Table 4. Query registers.

Register Name
Register

Address

Serial

Range
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

GET_TEMPERATURE 0x20 [7:0] Open Open Open Open Open Open Open Open

GET_ DEVICE_STATUS 0x21 [7:0] Open Open Open Open Open Open Open Open

USER_EEPROM_READ 0x23
[7:0] EEPROM Address [7:0]

[15:8] EEPROM Address [15:8]

CAL_EEPROM_READ 0x24
[7:0] EEPROM Address [7:0]

[15:8] EEPROM Address [15:8]

To read from the device using native USB transfers instead of the sc5413a_RegRead function requires

two operations. First, a write transfer is made to the device ENPOINT_OUT to tell the device what data

needs to be read back. Then, a read transfer is made from ENDPOINT_IN to obtain the data. The

number of valid bytes returned varies from 1 to 3 bytes. See the register details below.

Reading the Device Temperature

GET_TEMPERATURE (0x17) - Data returned by this register needs to be processed to correctly represent

data in temperature units of degrees Celsius. Data is returned in the first 14 bits [13:0]. Bit [13] is the

polarity bit indicating whether it is positive (0x0) or negative (0x1). For an ENDPOINT_IN transfer, data is

returned in 2 bytes with the MSB first. The temperature value represented in the raw data is contained

in the next 13 bits [12:0]. To obtain the temperature ADC code, the raw data should be masked (bitwise

AND’ed) with 0x1FFF, and the polarity should be masked with 0x2000. The conversion from 12 bit ADC

code to an actual temperature reading in degrees Celsius is shown below:

Positive Temperature (bit 13 is 0) = ADC code / 32

Negative Temperature (bit 13 is 1) = (ADC code – 8192) / 32

It is not recommended to read the temperature too frequently, especially once the temperature of the

SC5413A has stabilized. The temperature sensor is a serial device located inside the RF module.

Therefore, like any other serial device, reading the temperature sensor requires a sending serial clock

and data commands from the processor. The process of sending clock pulses on the serial transfer line

may cause unwanted spurs on the RF signal as the serial clock could potentially modulate the externally-

supplied LO signal within the device.

SC5413A Operating & Programming Manual Rev 1.3.0 17

Reading the Device Status

GET_DEVICE_STATUS (0x21) - This register returns the device status information such as phase lock

status of the PLL, current reference settings, etc. Data is contained in the first three bytes.

Table 5. Description of the status data bits.

Bit Description

[3] RF AMP Enable

[2] RF Path Selection

[1] LO Output Enable

[0] Device accessed

Reading the User EEPROM

USER_EEPROM_READ (0x23) - Once data has been written to the user EEPROM, it can be retrieved by

calling this register and using the process outlined next for reading calibration data. The maximum

address for this EEPROM is 0x7FFF. A single byte is returned.

Reading the Calibration EEPROM

CAL_EEPROM_READ (0x24) - Reading a single byte from an address in the device EEPROM is performed

by writing this register with the address for the instructWord. The data is returned as a byte. The CAL

EEPROM maximum address is also 0x7FFF. Reading above this address will cause the device to retrieve

data from the lower addresses. For example, addressing 0x8000 will return data stored in address

location 0x0000. The calibration EEPROM map is shown in Table 6.

All calibration data, whether floats, unsigned 8-bit, unsigned 16-bit or unsigned 32-bit integers, are

stored as flattened unsigned byte representation. A float is flattened to 4 unsigned bytes, so once it is

read back it needs to be un-flattened back to its original type. Unsigned values containing more than a

single byte are converted (un-flattened) simply by concatenation of the bytes through bit-shifting.

Converting to floating point representation is slightly more involved. First, convert the 4 bytes into an

unsigned 32-bit integer value, and then (in C/C++) type-cast a float pointer to the address of the value.

In C/C++, the code would be float Y = *(float *)&X, where X has been converted earlier to an unsigned

integer. An example written in C code would look something like the following:

byte_value[4]; // read in earlier
unsigned int uint32_value;
float float32_value;

int count = 0;
while (count < 4) {
 uint32_value = unit32_value | (byte_value[count] <<
(count*8));
 count++;
}

float32_value = *(float *)&uint32_value;

SC5413A Operating & Programming Manual Rev 1.3.0 18

C A L I B R A T I O N E E P R O M M A P

Table 6. Calibration EEPROM map.

EEPROM
ADDRESS

(HEX)

NUMBER OF
DATA POINTS

TYPE DESCRIPTION

0 1 U32 Manufacturing information

4 1 U32 Product serial number

8 1 U32 RF module number

C 1 U32 Product manufacture date

24 1 F32 Firmware revision

28 1 F32 Hardware revision

2C 40 F32 Reserved

CF 33 U8 Startup state

F4 1 F32 Calibration temperature

SC5413A Operating & Programming Manual Rev 1.3.0 19

S O F T W A R E A P I L I B R A R Y F U N C T I O N S

SignalCore’s philosophy is to provide products to our customers whose lower hardware functions are

easily accessible. For experienced users who wish to use direct, low-level control of frequency and gain

settings, having the ability to access the registers directly is a necessity. However, others may wish for

simpler product integration using higher level function libraries and not having to program registers

directly. The functions provided in the SC5413A API dynamic linked library or LabVIEW library are:

• sc5413a_SearchDevices

• sc5413a_OpenDevice

• sc5413a_CloseDevice

• sc5413a_RegWrite

• sc5413a_RegRead

• sc5413a_InitDevice

• sc5413a_SetDeviceStandby

• sc5413a_SetFrequency

• sc5413a_SetLinearityDac

• sc5413a_SetLoFilter

• sc5413a_SetLoOut

• sc5413a_SetRfAmplifier

• sc5413a_SetRfAttenuators

• sc5413a_WriteUserEeprom

• sc5413a_StoreStartupState

• sc5413a_SetRfFilter

• sc5413a_GetDeviceInfo

• sc5413a_GetDeviceStatus

• sc5413a_GetTemperature

• sc5413a_ReadCalEeprom

• sc5413a_ReadUserEeprom

• sc5413a_SetDcOffsetDac

• sc5413a_SetRfGain

• sc5413a_SetRfPath

Each of these functions is described in more detail on the following pages. Example code written in

C/C++ is located in the \Win\Driver\src directory to show how these functions are called and used. First,

for C/C++, we define the constants and types which are contained in the C header file, sc5413a.h. These

constants and types are useful not only as an include for developing user applications using the SC5413A

API, but also for writing device drivers independent of those provided by SignalCore.

SC5413A Operating & Programming Manual Rev 1.3.0 20

Constants Definitions

// Parameters for storing data in the onboard EEPROM
#define CALEEPROMSIZE 32768 // bytes
#define USEREEPROMSIZE 32768 // bytes

// Define labels
#define CH_I 0x00
#define CH_Q 0x01
#define RF_ATTEN1 0x00
#define RF_ATTEN2 0x01
#define RF_ATTEN3 0x02
#define RF_AMP1 0x00
#define RF_AMP2 0x01

// Define error codes
#define SUCCESS 0
#define USBDEVICEERROR -1
#define USBTRANSFERERROR -2
#define INPUTNULL -3
#define COMMERROR -4
#define INPUTNOTALLOC -5
#define EEPROMOUTBOUNDS -6
#define INVALIDARGUMENT -7
#define INPUTOUTRANGE -8
#define NOREFWHENLOCK -9
#define NORESOURCEFOUND -10
#define INVALIDCOMMAND -11

// Define device registers
#define INITIALIZE 0x01 // initialize the devices
#define SET_SYSTEM_ACTIVE 0x02 // set the device “active” LED
#define RF_FREQUENCY 0x10 // set the frequency
#define RF_AMPLIFIER 0x12 // enable amplifiers
#define RF_ATTENUATION 0x13 // set attenuation for digital step attenuators
#define RF_PATH 0x14 // select the RF path
#define RF_FILTER_SELECT 0x15 // manually select the RF filter
#define LO_FILTER_SELECT 0x16 // manually select the LO filter
#define LO_OUT_ENABLE 0x17 // enable LO output
#define IF_GAIN_DAC 0x18 // set the I and Q chain IF gain
#define VCOM_OUT_DAC 0x19 // sets common output voltage
#define DC_OFFSET_DAC 0x1A // sets the DC offset
#define LINEARITY_DAC 0x1B // sets the Linearity DAC (0 to 0xFFF)
#define STORE_STARTUP_STATE 0x1D // store the current state as default
#define USER_EEPROM_WRITE 0x1F // write a byte to the user EEPROM
#define GET_DEVICE_STATUS 0x20 // read the device status
#define GET_TEMPERATURE 0x21 // get the internal temperature of the device
#define USER_EEPROM_READ 0x23 // read a byte from the user EEPROM
#define CAL_EEPROM_READ 0x24 // read a byte from the calibration EEPROM

SC5413A Operating & Programming Manual Rev 1.3.0 21

Type Definitions

typedef struct deviceInfo_t
{
 unsigned int productSerialNumber;
 unsigned int rfModuleSerialNumber;
 float firmwareRevision;
 float hardwareRevision;
 unsigned int calDate; // year, month, day, hour:&(0xFF000000,0xFF0000,0xFF00,0xFF)
 unsigned int manDate; // year, month, day, hour:&(0xFF000000,0xFF0000,0xFF00,0xFF)
} deviceInfo_t;

typedef struct
{
 bool rfAmp1Enable;
 bool rfAmp2Enable;
 bool rfPath;
 bool LoEnable;
 bool deviceAccess;
} deviceStatus_t;

Function Definitions and Usage

The functions listed below are found in the sc5413a.dll dynamic linked library for the WindowsTM

operating system. These functions are also provided in the LabVIEW library, sc5413a.llb. The LabVIEW

functions contain context-sensitive help (Ctrl-H) to assist with understanding the input and output

parameters.

Function: sc5413a_SearchDevices

Definition: int sc5413a_SearchDevices(char **serialNumberList)

Output: char **serialNumberList (pointer list to serialNumberList)

Description: sc5413a_SearchDevices searches for SignalCore SC5506A devices connected to the host

computer and returns (int) the number of devices found, and it also populates the char

array with their serial numbers. The user can use this information to open specific

device(s) based on their unique serial numbers. See sc5413a_OpenDevice function on

how to open a device.

Function: sc5413a_OpenDevice

Definition: deviceHandle *sc5413a_OpenDevice(char *devSerialNum)

Input: char *devSerialNum (pointer serial number list)

Output: deviceHandle *deviceHandle (unsigned integer number for the deviceHandle)

Description: sc5413a_OpenDevice opens the device and turns the front panel “active” LED on if it is

successful. It returns a handle to the device for other function calls.

SC5413A Operating & Programming Manual Rev 1.3.0 22

Function: sc5413a_CloseDevice

Definition: int sc5413a_CloseDevice (deviceHandle *deviceHandle)

Input: deviceHandle *deviceHandle (handle to the device to be closed)

Description: sc5413a_CloseDevice closes the device associated with the device handle and turns off

the “active” LED on the front panel if it is successful.

Example: Code to exercise the functions that open and close the device:

Function: sc5413a_RegWrite

Definition: int sc5413a_RegWrite (deviceHandle *deviceHandle, unsigned char commandByte,

 unsigned long long int instructWord)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned char commandByte (register address)

 unsigned long long int instructWord (data for the register)

Description: sc5413a_RegWrite writes the instructWord data to the register specified by the

commandByte. See the register map on Table 3 for more information.

Example: To set the frequency to 2 GHz:

int status = sc5413a_RegWrite(devHandle, RF_FREQUENCY, 2000000000); // set frequency to 2 GHz

// Declaring
#define MAXDEVICES 50
deviceHandle *devHandle; //device handle
int numOfDevices; // the number of device types found
char **deviceList; // 2D to hold serial numbers of the devices found
int status; // status reporting of functions

deviceList = (char**)malloc(sizeof(char*)*MAXDEVICES); // MAXDEVICES serial numbers to search
for (i=0;i<MAXDEVICES; i++)
 deviceList[i] = (char*)malloc(sizeof(char)*SCI_SN_LENGTH); // SCI SN has 8 char
numOfDevices = sc5413a_SearchDevices(deviceList); //searches for SCI for device type
if (numOfDevices == 0)
{
 printf("No signal core devices found or cannot not obtain serial numbers\n");
 for(i = 0; i<MAXDEVICES;i++) free(deviceList[i]);
 free(deviceList);
 return 1;
}
printf("\n There are %d SignalCore %s USB devices found. \n \n", numOfDevices,
SCI_PRODUCT_NAME);
 i = 0;
 while (i < numOfDevices)
 {
 printf(" Device %d has Serial Number: %s \n", i+1, deviceList[i]);
 i++;
 }
//** sc5413a_OpenDevice, open device 0
devHandle = sc5413a_OpenDevice(deviceList[0]);
// Free memory
 for(i = 0; i<MAXDEVICES;i++) free(deviceList[i]);
 free(deviceList); // Done with the deviceList
 //
// Do something with the device
// Close the device
status = sc5413a_CloseDevice(devHandle);

SC5413A Operating & Programming Manual Rev 1.3.0 23

Function: sc5413a_RegRead

Definition: int sc5413a_RegRead (deviceHandle *deviceHandle, unsigned char commandByte,

 unsigned long long int instructWord, unsigned int *receivedWord)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned char commandByte (address byte of the register to write to)

 unsigned long long int instructWord (data for the register)

 unsigned int *receivedWord (data to be received)

Description: sc5413a_RegRead reads the data requested by the instructWord data to the register

specified by the commandByte. See

Table 4 (register map) for more information.

Example: To read the status of the device:

Function: sc5413a_InitDevice

Definition: int sc5413a_InitDevice (deviceHandle *deviceHandle, bool mode)

Input: deviceHandle *deviceHandle (handle to the opened device)

 bool mode (set the mode of initialization)

Description: sc5413a_InitDevice initializes (resets) the device. Mode = 0 resets the device to the

default power up state. Mode = 1 resets the device but leaves it in its current state.

Function: sc5413a_SetFrequency

Definition: int sc5413a_SetFrequency (deviceHandle *deviceHandle,

 unsigned long long int frequency)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned long long int frequency (frequency in Hz)

Description: sc5413a_SetFrequency sets the RF frequency so the device can automatically use the

information to set the optimal filters in the LO and RF filter banks.

Function: sc5413a_SetRfAmplifier

Definition: int sc5413a_SetRfAmplifier(deviceHandle *devHandle, bool amplifier,
bool mode)

Input: deviceHandle *deviceHandle (handle to the opened device)

 bool amplifier (0=AMP#1, 1=AMP#2)

 bool mode (disable/enable)

Description: sc5413a_SetRfAmplifier enables or disables the RF amplifiers.

unsigned int deviceStatus;

int status = sc5413a_RegRead(devHandle,
GET_DEVICE_STATUS,0x00,&deviceStatus);

SC5413A Operating & Programming Manual Rev 1.3.0 24

Function: sc5413a_SetRfPath

Definition: int sc5413a_SetRfPath (deviceHandle *deviceHandle, bool mode)

Input: deviceHandle *deviceHandle (handle to the opened device)

 bool mode (0=main path, 1=aux path)

Description: sc5413a_SetRfPath select the RF input port.

Function: sc5413a_SetLoOut

Definition: int sc5413a_SetLoOut(deviceHandle *deviceHandle, bool mode)

Input: deviceHandle *deviceHandle (handle to the opened device)

 bool mode (0=disable, 1= enable)

Description: sc5413a_SetLoOut enables the LO output port. The LO input signal is replicated and

piped out through these LO output port.

Function: sc5413a_SetRfAttenuation

Definition: int sc5413a_SetRfAttenuation (deviceHandle *deviceHandle,

unsigned char attenuator, unsigned char atten)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned char attenuator (selects the attenuator to program)

 unsigned char atten (attenuation value (0-31 dB))

Description: sc5413a_SetRfAttenuation Sets the attenuation of the RF attenuators.

Function: sc5413a_SetRfFilter

Definition: int sc5413a_SetRfFilter (deviceHandle *deviceHandle, unsigned char filter)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned char filter (select the appropriate filter number 0-8)

Description: sc5413a_SetRfFilter selects the active filter in the RF filter bank.

Function: sc5413a_SetLoFilter

Definition: int sc5413a_SetLoFilter (deviceHandle *deviceHandle, unsigned char filter)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned char filter (select the appropriate filter number 0-8)

Description: sc5413a_SetLoFilter selects the active filter in the LO filter bank.

SC5413A Operating & Programming Manual Rev 1.3.0 25

Function: sc5413a_SetDcOffsetDac

Definition: int sc5413a_SetDcOffsetDac (deviceHandle *deviceHandle, unsigned char channel,

 unsigned short dacValue)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned char channel (select the I or Q channel)

 unsigned short dacValue (DAC value 0 - 16383)

Description: sc5412a_SetDcOffsetDac sets the DC offset voltage at the IQ modulator core. Voltage

adjust is approximately +/- 0.05 V. The default factory setting is 8038.

Function: sc5413a_SetLinearityDac

Definition: int sc5413a_SetLinearityDac (deviceHandle *deviceHandle, unsigned char channel,

 unsigned short dacValue)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned char channel (select the I or Q channel)

 unsigned short dacValue (DAC value 0 - 16383)

Description: sc5412a_SetLinearityDac sets the bias point of the IQ modulator, which affects the

linearity of the device. A DAC value of 3935 is recommended and is also the default

factory setting.

Function: sc5413a_WriteUserEeprom

Definition: int sc5413a_WriteUserEeprom(deviceHandle *deviceHandle, unsigned int memAdd,

 unsigned char byteData)

Input: deviceHandle *deviceHandle (handle to the opened device)

 unsigned int memAdd (memory address to write to)

 unsigned char byteData (byte to be written to the address)

Description: sc5413a_WriteUserEeprom writes one byte of data to the memory address specified.

Function: sc5413a_StoreCurrentState

Definition: int sc5413a_StoreCurrentState(deviceHandle *deviceHandle)

Input: deviceHandle *deviceHandle (handle to the opened device)

Description: sc5413a_StoreCurrentState stores the current state of the devices as the default

power-up state.

SC5413A Operating & Programming Manual Rev 1.3.0 26

Function: sc5413a_GetDeviceInfo

Definition: int sc5413a_GetDeviceInfo(deviceHandle *deviceHandle, deviceInfo_t *devInfo)

Input: deviceHandle *deviceHandle (handle to the opened device)

Output: deviceInfo_t *devInfo (device info struct)

Description: sc5413a_GetDeviceInfo retrieves device information such as serial number, calibration

date, revisions, etc.

Function: sc5413a_GetDeviceStatus

Definition: int sc5413a_GetDeviceStatus (deviceHandle *deviceHandle,

 deviceStatus_t *deviceStatus)

Input: deviceHandle *deviceHandle (handle to the opened device)

Output: deviceStatus_t *deviceStatus (deviceStatus struct)

Description: sc5413a_GetDeviceStatus retrieves the status of the device such as phase lock status

and current device settings.

Example: Code showing how to use function:

Function: sc5413a_GetTemperature

Definition: int sc5413a_GetTemperature (deviceHandle *deviceHandle, float *temperature)

Input: unsigned int deviceHandle (handle to the opened device)

Output: float *temperature (temperature in degrees Celsius)

Description: sc5413a_GetTemperature retrieves the internal temperature of the device.

Function: sc5413a_ReadCalEeprom

Definition: int sc5413a_ReadCalEeprom(deviceHandle *deviceHandle, unsigned int memAdd,

 unsigned char *byteData)

Input: unsigned int deviceHandle (handle to the opened device)

 unsigned int memAdd (EEPROM memory address)

Output: unsigned char *byteData (the read back byte data)

Description: sc5413a_ReadCalEeprom reads back a byte from a specific memory address of the

calibration EEPROM.

deviceStatus_t *devStatus;
devStatus = (deviceStatus_t*)malloc(sizeof(deviceStatus_t));

int status = SC5413A_GetDeviceStatus(devHandle, devStatus);

if(devStatus->loEnable)
printf("The LO Output Port is Enabled \n");
else
printf("The LO Output Port is disabled \n");

free(deviceStatus);

SC5413A Operating & Programming Manual Rev 1.3.0 27

Function: sc5413a_ReadUserEeprom

Definition: int sc5413a_ReadUserEeprom(deviceHandle *deviceHandle, unsigned int memAdd,

 unsigned char *byteData)

Input: unsigned int deviceHandle (handle to the opened device)

 unsigned int memAdd (EEPROM memory address)

Output: unsigned char *byteData (the read back byte data)

Description: sc5413a_ReadUserEeprom reads back a byte from a specific memory address of the

user EEPROM.

SC5413A Operating & Programming Manual Rev 1.3.0 28

P R O G R A M M I N G T H E S E R I A L

P E R I P H E R A L I N T E R F A C E

The SPI Architecture:

The SPI interface is implemented using 8-bit length physical buffers for both the input and output, hence

they need to be read and cleared before consecutive bytes can be transferred to and from them. In

other words, a time delay is required between consecutive bytes written to or read from the device by

the host. The chip-select pin (𝐶𝑆̅̅̅̅) must be asserted low before data is clocked in or out of the product.

𝐶𝑆̅̅̅̅ must be asserted for the entire duration of the transfer.

Once a full transfer has been received, the device will proceed to process the command and de-assert

low the SERIAL_READY bit, which is monitored on pin 15 of the SPI interface (digital I/O) connector.

While SERIAL_READY is de-asserted low, the device will ignore any incoming commands. It is only ready

when the previous command is fully processed and SERIAL_READY is re-asserted high. It is important

that the host controller monitors the SERIAL_READY bit and performs transfers only when it is asserted

high to avoid miscommunication.

All data transferred to and from the device are clocked on the falling edge (MODE 1) of the clock as

shown in Figure 4; data is clocked in on the rising edge when pin #18 is pulled to ground (MODE 0).

Figure 5 shows a 3 byte SPI transfer initiated by the host; the device is always in slave mode. The CS pin

must be asserted low for a minimum period of 5 𝜇𝑠 before data is clocked in. The clock rate may be as

high as 1.0 MHz, however if the external SPI signals do not have sufficient integrity due to cabling

problems the rate should be lowered. It is recommended that the clock rate not exceed 1.0 MHz to

ensure proper serial operation. As mentioned above, the SPI architecture limits the byte rate because

after every byte transfer, the input and output SPI buffers need to be cleared and loaded respectively by

the device SPI engine. The time required to perform this task is indicated in Figure 5 by 𝑇𝐵, which is the

time interval between the end of one byte transfer and the beginning of another. The recommended

time delay for 𝑇𝐵 is 10𝜇𝑠 or greater. The number of bytes transferred depends on the command. It is

important that the correct number of bytes is transferred for the associated device register because

once the first byte (MSB) containing the device register is received, the device will wait for the desired

number of bytes associated with it. The device will hang if insufficient number of bytes is written and

the device will need to be reset externally. The time required to process a command is also dependent

on the command itself; measured times for command completions are typically between 40 𝜇𝑠 to

150 𝜇𝑠 after reception. The user may choose to wait a minimum of 150 𝜇𝑠 or query the SERIAL_READY

bit before sending in another command; the latter is recommended for robustness.

SC5413A Operating & Programming Manual Rev 1.3.0 29

Figure 4. SPI Mode - Data clocked in on falling clock edge.

Figure 5. SPI timing.

Additional SPI registers

There are 2 additional registers available for SPI communication as shown in Table 7. Data byte(s)

associated with registers can be “zeros” or “one”; it doesn’t matter which value since the device ignores

them. They are only required for clocking out the returned data from the device.

Table 7 Additional SPI registers.

Register Name
Register
Address

Serial
Range

Bit 7
(MSB)

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Bit 0
(LSB)

SPI_OUT_BUFFER 0x22

[7:0] Open

[15:8] Open

[23:16] Open

[31:24] Open

Writing the SPI Bus

The SPI transfer size (in bytes) depends on the register being targeted. The MSB byte is the command

register address as note in the above set of registers in Table 3. The subsequent bytes contain the data

associated with the register. As data from the host is being transferred to the device, data present on its

SPI output buffer is simultaneously transferred back, MSB first, via the master-in-slave-out (MISO) line.

The data return is invalid for most transfers except for those register commands querying for data from

the device. See the Reading the SPI Bus section for more information on retrieving data from the device.

Figure 6 shows the contents of a single 3 byte SPI command written to the device. Table 3 provides

MSB

CS

MISO

MOSI

CLK

MSB

LSB

LSB

TS TBTC

8 Bit Command/ Reg. Address Upper 8 Control/Data Lower 8 Control/Data

TS : Time between CS assertion and first clock cycle >= 5 uS

TC : Clock period = 1 uS typical (Clock rate depends on signal integrity from host)

TB : Duration between byte transfer >= 10 uS

CLK

DATA

CS

ALTERNATE

CS

SC5413A Operating & Programming Manual Rev 1.3.0 30

information on the number of data bytes and their contents for an associated register. There is a

minimum of 1 data byte for each register even if the data contents are “zeros”.

Figure 6. Single 3 byte transfer buffer.

Reading the SPI Bus

Data is simultaneously read back during a SPI transfer cycle. Requested data from a prior command (see

Table 8) is available on the device SPI output buffers, and these are transferred back to the user host via

the MISO line. To obtain valid requested data would require querying the SPI_OUT_BUFFER, which

requires 5 bytes of clock cycles; 1 byte for the device register (0x22) and 4 empty bytes (MOSI) to clock

out the returned data (MISO). An example of reading the temperature from the device is shown in

Figure 7.

Figure 7. Reading queried data.

In the above example, valid data is present in the last 2 bytes; byte 1 and byte 0. Table 8 shows the valid

data bytes associated with the querying register.

Table 8. Valid returned data bytes.

Register Name
Register
Address

Byte 3 Byte 2 Byte 1 Byte 0

GET_TEMPERATURE 0x20 valid valid

GET_DEVICE_STATUS 0x21 valid

USER_EEPROM_READ 0x23 valid

CAL_EEPROM_READ 0x24 valid

P R O G R A M M I N G T H E R S - 2 3 2 I N T E R F A C E

The RS-232 version of the SC5413A has a standard interface buffered by an RS-232 transceiver so that it

may interface directly with many host devices, such as a desktop computer. The interface connector for

RS-232 communication is labeled “Digital I/O” on the front of the panel. Refer to Error! Reference s

ource not found. and Error! Reference source not found. for position and pin-out information. The

device communication control set is provided in Table 9 below.

23 15 7 0

Register Address Byte 1 Byte 0

0x000x21

InvalidInvalid

CLK

MOSI

CS

MISO

0x00 0x00

Data Byte 3Invalid Data Byte 2

0x22

Request for temperature Query SPI_OUTPUT_BUFFER for data

0x00 0x00

Data Byte 1 Data Byte 0

SC5413A Operating & Programming Manual Rev 1.3.0 31

Table 9. RS-232 communication settings.

Baud rate Rate of transmission. Pin 18 of the Digital IO connector selects the rate. By

default if the pin is pulled high or open, the rate is set 56700 at power up or

upon HW reset. When the pin is pulled low or grounding it, the rate is set to

115200.

Data bits The number of bits in the data is fixed at 8.

Parity Parity is 0 (zero).

Stop bits 1 stop bit.

Flow control 0 (zero) or none.

Writing to the Device via RS-232

It is important that all necessary bytes associated with any one register are fully sent. In other words, if a

register requires a total of four bytes (address plus data) then all four bytes must be sent even though

the last byte may be a null. The device, upon receiving the first register addressing byte, will wait for all

the associated data bytes before acting on the register instruction. Failure to complete the register

transmission will cause the device to behave erratically or hang. Information for writing to the

configuration registers is provided in Error! Reference source not found..

When the device receives all the information for a register and finishes performing its instruction, it will

return a byte back to the host. Querying this return byte ensures that the prior configuration command

has been successfully executed and that the device is ready for the next register command. It is

important to clear the incoming RX buffer on the host by querying or force flushing it to avoid incoming

data corruption of querying registers. The return byte value is 1 for a successful configuration and 0 for

an unsuccessful configuration.

Reading from the Device via RS-232

To query information from the device, the query registers are addressed and data is returned. Returned

data vary in length, which are dependent on the register call. Table 4 contains the query register

information. As with the configuration registers, it is important that the data byte(s) associated with the

query registers are sent even if they are nulls. The returned data length is also detailed in the “Querying

the SC5413A: Writing to Request Registers” section. Table 11 summarizes the number of returned bytes

for RS232; note that this is not the same as the SPI return byte lengths.

Table 10 RS232 Returned data bytes for query registers

Register Name
Register
Address

Returned Bytes

GET_TEMPERATURE 0x20 2

GET_DEVICE_STATUS 0x21 1

USER_EEPROM_READ 0x23 1

CAL_EEPROM_READ 0x24 1

SC5413A Operating & Programming Manual Rev 1.3.0 32

RS232 WindowsTM API

An API for the windows platform is provided in the sc5413a_rs232.dll dynamic library, which is located

in the installation directory or the USB driver under the Win\API\RS232 directory. An example code in

C/C++ is provided to demonstrate how this DLL is called. Source code is available upon request.

Using the LabVIEW Functions and NI-VISA

Functions for RS-232 control are provided in LabVIEW and use NI-VISA. The low level port control

functions are unique to RS-232 and are contained in the subdirectory UsartPort. These functions are

listed in Table 11 below for convenience. All provided LabVIEW VI functions are not protected, so the

user may open them to understand how the register calls are made.

Table 11. LabVIEW RS-232 port access functions.

Function Description

Opens the VISA session to the serial port

associated with the device. Option to select

between 2 Baud rates.

Closes the VISA session associated with the serial

port.

Writes the data bytes in the buffer to the opened

port. The data buffer is a byte array. Most

significant data is sent first.

Writes the query register data and reads back the

data associated with the register. The buffers are

byte arrays. Most significant data is sent and

received first. The number of bytes to be read back

from the queried register needs to be specified.

SC5413A Operating & Programming Manual Rev 1.3.0 33

C A L I B R A T I O N & M A I N T E N A N C E

The SC5413A does not receive a factory calibration. The SC5413A is sold as a component, and users will

need to perform amplitude and IQ correction as part of their system which may minimally include a

digitizer, LO source, and the SC5413A. Should users require SignalCore to perform any calibration,

please contact SignalCore support directly.

R E V I S I O N N O T E S

Rev 1.1.0 Added RS232 programming information

Rev 1.2.0 - Corrected pin outs for the digital connector

- Removed legacy information for SPI communication

Rev 1.3.0 Address Removed

