
© 2017 SignalCore, Inc. All Rights Reserved.

Programming Manual
SC5407A & SC5408A

6 GHz RF Upconverter
www.signalcore.com

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

1 Introduction

Contents

1 Introduction .. 3

2 Driver Architecture .. 4

2.1 API Function Names and Call Type .. 4

2.2 Compiling Code in C/C++ ... 5

3 Identifying, Opening, and Closing Devices ... 6

3.1 Identifying Devices on the Host Computer .. 6

3.2 Opening and Connecting to a Device .. 7

3.3 Disconnecting from and Closing a Device .. 7

3.4 Multiple Devices .. 7

3.5 Initialize Device .. 7

4 Configuration Functions .. 8

4.1 Setting the Frequency at the Ports .. 8

4.2 Setting the Attenuators ... 8

4.3 Configuring the Conversion Signal Path .. 9

4.3.1 Manually Setting the RF Filters .. 10

4.4 Configuring the Conversion Gain ... 11

4.5 Setting the Synthesizer Modes .. 12

4.6 Configuring the Reference Clock ... 12

4.6.1 Adjustment to the Internal TCXO Clock ... 13

4.7 Saving the New Default State of the Device .. 13

4.8 Setting the First LO Drive Path... 13

5 Query Functions .. 14

5.1 Getting General Device Information ... 14

5.2 Getting the Device Status .. 14

5.3 Getting Other RF Parameters .. 15

5.4 Retrieving the Device Temperature .. 15

6 Calibration Functions ... 16

6.1 Obtaining Calibration Data .. 16

6.1.1 Structured Calibration Data Format .. 16

6.1.2 Reading Formatted Data ... 19

6.1.3 Reading Raw Calibration Data ... 19

6.2 Configuring the Gain of the Device Using Calibration ... 20

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

2 SC5407A & SC5408A Programming Manual

7 General Functions ... 22

7.1 Writing to the User EEPROM ... 22

7.2 Reading from the Calibration and User EEPROMs ... 22

7.3 Configuring the Frequency Plan .. 23

7.4 Self-Calibration of the YIG based synthesizer .. 23

7.5 Write Registers .. 23

7.6 Read Registers ... 24

8 Revision Notes ... 25

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

3 Introduction

1 Introduction

The SignalCore SC5407A and SC5408A are high dynamic, high performance triple stage super

heterodyne RF upconverters covering the frequency range of 100 kHz to 6 GHz. These products offer

wide conversion bandwidths of 80 MHz, 160 MHz, and 320 MHz, making them ideal for applications

involving broad band RF signal conversion such as those in satellite, data links, spectrum monitoring,

test and measurement, and radar.

This manual serves as a programming guide for those using the WindowsTM software API to program

these devices for the purpose of communicating with them through a host computer via the PXIe,

USB or RS232 bus. This document is structured into sections that describe the generic use of the

product’s functions such as searching for available devices, opening a device, changing the

conversion parameters, obtaining gain correction using calibration data, and putting the device into

power standby.

This manual will explain each function in detail, including the purpose of the function and what each

of its parameters mean. Wherever applicable, snippets of C/C++ code are provided as examples on

how to effectively use a function.

SignalCoreTM a registered trademark of SignalCore Incorporated, USA. SignalCoreTM is referred to as SignalCore in this manual.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States and/or other countries.

Trade names are trademarks of their respective owners.

© 2017 SignalCore Incorporated, USA

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

4 SC5407A & SC5408A Programming Manual

2 Driver Architecture

The SC5407A is a PXIe based product, while the SC5408A is controlled through USB and RS232. Each

of these three different methods of communication requires its unique set of header files, dynamic

linked libraries (DLL), and system level drivers.

The software architectures of the communication methods utilized are illustrated in the following

diagrams. At the highest level, where the user application resides, are the user code, header file(s)

(*.h) and the library file (*lib) for the device. The level below that has the device API DLL and driver

DLL (*.dll), which are called by the application level. The lowest level is where the device system

driver or the kernel level driver (*.sys) resides. Table 1 shows the software architecture of the three

interface buses.

Table 1. Software Architectures

PXIe USB RS232

userapp.c

sc5407a.h

sc5407a.lib

userapp.c

sc5408a_usb.h

sc5408a_usb.lib

userapp.c

sc5408a_rs232.h

sc5408a_rs232.lib

sc5407a.dll

scipciexr.dll

sc5408a_usb.dll

libusb-1.0.dll

sc5408a_rs232.dll

kernel32.dll

scipciexr.sys winusb.sys serial.sys

2.1 API Function Names and Call Type

The function names for an interface are compounded words comprising of the product name,

followed by the interface, and ending with the function description such as

“sc5408a_usbSetFrequency”. In this document, all function descriptions will leave out the product

and interface description so that “SetFrequency” is used to represent all interfaces. All functions are

of call type __stdcall in WindowsTM.

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

5 Driver Architecture

2.2 Compiling Code in C/C++

The header files are shared between PXI, USB, and RS232 interfaces. To successfully use the header

files to write applications, proper macros must be defined prior to compilation of the code.

In Microsoft Visual Studio, these macros can be entered in as Preprocessor Definitions in the project

properties window. This could also be accomplished in GCC with the -D name option, where name is

one of the macro words.

Device/Interface Macro

Up Converter UPCONVERTER

PXI PXI_DEVICE_TYPE

USB USB_DEVICE_TYPE

RS232 RS232_DEVICE_TYPE

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

6 SC5407A & SC5408A Programming Manual

3 Identifying, Opening, and Closing Devices

The SC5407A and SC5408A upconverters are identified by their unique serial numbers. This serial

number is passed to the OpenDevice() function as a string in order to open a connection to the

device. The string consists of 8 HEX format characters such as 100E4FC2.

3.1 Identifying Devices on the Host Computer

The serial number is found on the product label, attached to the outer body of the product. However,

if the serial number cannot be found, there is a function to obtain the current devices connected to

the host computer. The SearchDevices() function scans the host computer for SC5407A or

SC5408A devices. If found, a list containing the number of devices and their corresponding serial

numbers is returned. The function is declared as:

SCISTATUS SearchDevices(char **serialNumberList,

int *numberDevices);

The **serialNumberList is a 2D array format [number of devices, serial number

length + 1], and *numberDevices is the number of devices detected and available for

connection. The following code snippet demonstrates how to prepare to call this function:

SCISTATUS status;

char **serialNumbers;

int i, nDevices;

serialNumbers = (char**)malloc(sizeof(char*)*MAXDEVICES);

 for (i=0;i<MAXDEVICES; i++)

 serialNumbers[i] =

(char*)malloc(sizeof(char)*SCI_SN_LENGTH);

/*

 MAXDEVICES is the number of devices to allocate memory for.

 SCI_SN_LENGTH is defined 0x09

*/

status = SearchDevices(serialNumbers,

 &nDevices

);

if(status != SCI_SUCCESS)

...error handling, free allocated memory...

It is important to free all allocated memory immediately once it is not in use. The following code lines

show how to deallocate the memory used to hold the serial numbers.

for(i = 0; i < MAXDEVICES; i++)

free(serialNumbers[i]);

free(serialNumbers);

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

7 Identifying, Opening, and Closing Devices

3.2 Opening and Connecting to a Device

The first step to communicating with the device is to open a connection to it from the host computer.

The following code is an example of how this is done using the DeviceOpen() function. The

function returns a HANDLE to the device that must be used by subsequent function calls to the

device:

SCISTATUS status;

HANDLE deviceHandle;

Status = DeviceOpen(“<serial number string>”,

 &deviceHandle

);

The “<serial number string>” of type char can be substituted by the serialNumber[i]

as found in the previous code example. Upon successfully executing this function, the device active

LED on the front panel will turn on green. This DeviceOpen() call does not apply any other changes

to the device; its working state remains unchanged by the command.

3.3 Disconnecting from and Closing a Device

When the device is no longer in use, the application should disconnect it from the host computer.

This is done by using the DeviceClose() function. Once it has executed, the active LED on the

front panel will turn off and the HANDLE to the device will no longer be valid for further use:

status = DeviceClose(deviceHandle);

deviceHandle = NULL;

3.4 Multiple Devices

Multiple devices may be opened simultaneously within one application. The DeviceOpen()

function must be called for each of the devices using their respective serial numbers. The HANDLE

returned by each call is unique to each device and must be used for subsequent calls only on the

device from which it is returned.

3.5 Initialize Device

To initialize the device to its reset state or power-up state, use the following code example:

#define RESET_STATE 1;

#define CURRENT_STATE 0;

Status = InitDevice(deviceHandle,

 RESET_STATE

);

In the example above, , if the value 0 or CURRENT_STATE is written, the device will reprogram all

the hardware to its current state; that is, the state does not change, but the hardware components

are refreshed.

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

8 SC5407A & SC5408A Programming Manual

4 Configuration Functions

These functions set the device configuration parameters such as frequency, attenuation, filters, and

signal paths.

4.1 Setting the Frequency at the Ports

The RF output port frequency can be set by calling the SetFrequency() function while the IF input

port frequency can be set by calling the SetIfFrequency() function. The RF port frequency has a

settable upper limit of 6.2 GHz and a lower limit of 0 Hz, while the IF port frequency has a settable

upper limit of 500 MHz and a lower limit of 0 Hz. Although these are functional limits, they may not

represent the operational performance boundaries of the device. Please consult the product

Hardware Manual for more information.

The functions to change frequency may be programmed as:

double rf_frequency = 2.4e9;

double if_frequency = 240e6;

status = SetFrequency(deviceHandle,

 rf_frequency

);

status = SetIfFrequency(deviceHandle,

 if_frequency

);

Note that the RF frequency resolution is 1 Hz, while the IF frequency is 5 MHz.

4.2 Setting the Attenuators

These devices have 5 sets of programmable attenuators, including 2 in the RF output section, 1 in

the second IF, 1 in the IF input section, and 1 in the external IF2 input section. The attenuators have

step size of 1 dB. Numbers represent these attenuators as defined in the header files:

#define RFATTEN1 0

#define RFATTEN2 1

#ifdef IF1ATTENPRESENT

#define IF1ATTEN 2

#endif

#ifdef UPCONVERTER

#define IF2ATTEN 2

#endif

#define IF2EXTATTEN 3

#define IF3ATTEN1 4

#ifdef DOWNCONVERTER

#define IF3ATTEN2 5

#endif

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

9 Configuration Functions

Notice that IF1 does not have any attenuators in the current hardware and are ignored. To set the

attenuators to a certain value, use the function SetAttenuator(). As an example, the following

code snippet sets the first RF attenuator to 20 dB and the IF3 attenuator to 5.00 dB:

status = SetAttenuator(deviceHandle,

 RFATTEN1,

 20.00

);

Status = SetAttenuator(deviceHandle,

 IF3ATTEN1,

 5.00

);

4.3 Configuring the Conversion Signal Path

These upconverters have configurable filter options and conversion paths. Depending on the option

choice, the user needs to properly configure the device prior to setting frequencies and gain (via

attenuators and preamplifier). As an example, for a wide bandwidth of 320 MHz, the 3rd conversion

stage is bypassed and IF2 is directly switched to the output IF3 port, such that the IF3 frequency is

fixed at 1.25 GHz. With this configuration setting, programming the final IF frequency has no effect.

The function SetSignalPath() is used to configure the device paths. It requires a structure input

containing the configuration parameters in the following form:

typedef struct

{

 bool_t bypassConverter;

bool_t if2ExtSelect;

 bool_t bypassIf3Conv;

 bool_t if1Filter;

 bool_t if2Filter;

 uint8_t if3Filter1;

 bool_t if3Filter2;

 bool_t invertSpectrum;

 bool_t autoRfFilter;

 bool_t rfFilterSelect

} signalPathParams_t;

A brief description of each structure parameter’s function is provided below. For more details, refer

to the product Hardware Manual.

bypassConverter Enabling this will switch the RF port directly to the IF port, bypassing all
stages of conversion.

if2ExtSelect This will set the IF2 signal from the external IF2 input port and not from the
internal RF converted IF2.

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

10 SC5407A & SC5408A Programming Manual

bypassIf3Conv This will bypass the final stage of conversion. IF2 is directed to the output
of the IF port.

if1Filter The selection between a wider and narrower bandpass filter at 7.6 GHz.
This option is removed for hardware revisions 3 or later.

if2Filter The selection between the 160 MHz and 80 MHz filter in the IF2 section.

if3Filter2 This selects between a 1400 MHz LPF and a 1250 MHz BPF. This value
should always be 0 if the 3rd conversion stage is enabled and not bypassed.

invertSpectrum When the IF3 conversion stage is not bypassed, the spectrum at the IF port
can be set to inverted relative to the RF input.

autoRfFilter The RF filters are automatically selected as frequency changes; a value of
0 disables and 1 enables.

rfFilterSelect Filter value (0 to 7). Value of 7 is the through path. See the hardware
manual for filter definitions and the product datasheet for frequency
response. These are selected manual only if autoRfFilter = 0.

To set the device to use all 3 stages of conversion with a bandwidth of 80 MHz use the following

code:

signalPathParams_t *pathParameters;

pathParameters->if2Filter = 1; /* set the filter to 80 MHz BW */

/* do similar assignments to the rest of the parameters */

status = SetSignalPath(deviceHandl,

 pathParameters

);

4.3.1 Manually Setting the RF Filters

Although the filters can be selected using the SetSignalPath() function, it can also be

controlled through the SetRfFilters() function. The advantage of using this function is that it

only acts on the filters and not on other signal path components. To select the 6th filter write:

uint8_t filter = 1;

Status = SetPreamp(deviceHandle,

 filter

);

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

11 Configuration Functions

4.4 Configuring the Conversion Gain

The device has an algorithm to automatically set up the attenuators to achieve the desired gain while

maintaining the desired dynamic range. The gain of the device is the difference in power between

the output and input ports, if most of the gain is applied close to the input of the device, the signal-

to-noise dynamic range is improved, however if it is applied later close to the output, the linearity

dynamic range is improved. A balance of the gain will also provide a balance between SNR and IMD

dynamic ranges.

Since the computation is performed by the onboard MCU, it relies heavily on ideal parameters such

as attenuator states in the calculations, thus the device setting will only be within 2 dB of the desired

value. See Section 6 for functions that will allow for better gain settings and accuracy calculations.

Setting the device up for gain requires user input gain parameters in its structure form:

typedef struct gainParams_s

{

 float rfLevel;

 float ifLevel;

 uint8_t linearMode;

} gainParams_t;

Here the members are:

rfLevel This is the nominal expected level at the RF port, commonly called
the reference level when the converter is used in a signal analyzer
application.

ifLevel This is the nominal output IF level.

linearMode There are 3 options:

 0 Normal mode, a trade-off between noise figure and linearity.

 1 Better noise figure mode.

 2 Better linearity

The following code demonstrates how to set up the device to automatically set the gain as the

frequency is changed. If its parameters remain unchanged throughout the application, the function

only needs to be run once.

unsigned char loadParams = 1;

unsigned char autoGainEnable = 1;

gainParams_t *gainParams;

gainParams->rfLevel = 0.0;

gainParams->ifLevel = 6.0; //expected IF level from BB

gainParams->linearMode = 0;

status = SetAutoGain(deviceHandle,

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

12 SC5407A & SC5408A Programming Manual

 gainParams,

 loadParams,

 autoGainEnable

);

There are 2 additional parameters used in the above functions: loadParams and

autoGainEnable. They are defined as:

loadParams Set this to 1 if the device is required to load in a fresh set of gainParams.
If the gain parameters do not change through the application, then the
parameter only needs to be loaded once.

autoGainEnable This parameter, if set to 1, will cause the device to update the attenuators
and RF amplifier when frequencies are changed.

4.5 Setting the Synthesizer Modes

The loop gain of the synthesizer can be changed to shape the phase noise spectral density of the

signal. There are 3 options for the loop gain: low, normal, and high. For low levels of close-in carrier

phase noise, select HIGH. The first local oscillator is an agile YIG based synthesizer whose tuning

speed may be improved by enabling fast tuning. Consult the Hardware Manual for more information

on these synthesizer modes. The following code demonstrates how the settings are written:

Enum LOOPGAIN pllLoopGain = HIGH,

Bool_t fastTuneEnable = 1;

Status = SetSynthMode(deviceHandle,

 fastTuneEnable,

 pllLoopGain

);

4.6 Configuring the Reference Clock

The configuration of the device reference clock behavior is performed using the following function:

bool_t lockExtEnable = 1; /* enable locking to external source */

bool_t refOutEnable = 1; /* enable output of reference clk */

bool_t clk100Enalbe = 0; /* ref out will be 10 MHz, not 100 MHz*/

bool_t pxi10ClkEnable = 0; /* export 10MHz PXI clk(SC5407A only)*/

status = SetReferenceClock(deviceHandle,

 lockExtEnable,

 refOutEnable,

 clk100Enable,

 pxi10ClkEnable

);

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

13 Configuration Functions

4.6.1 Adjustment to the Internal TCXO Clock

The device has a TCXO timebase whose frequency accuracy may be adjusted via a DAC. When the

device is not locked to an external reference source, it uses its internal TCXO as the reference. The

following functions are used to make incremental adjustments to this clock:

unsigned int tcxoDac = 0x2E0A; /* value range of 0x00 to 0x3FFF */

status = SetReferenceDac(deviceHandle,

 tcxoDac);

4.7 Saving the New Default State of the Device

The current operating state of the device, including the new DAC value as discussed above, can be

stored as the device default by calling the SetAsDefault() function. Once this function is

executed, the current state will be the device reset and power up state. This is done by using the

following code:

status = SetAsDefault(deviceHandle);

4.8 Setting the First LO Drive Path

The first synthesize local oscillator (LO1) drives by default the first mixer of the conversion path;

however, it could be switched to drive an external device such as a mixer. To do this, the first

parameter of the enabling function is set to 1:

unsigned char loPath = 1;

status = SetLoPath(deviceHandle,

 loPath

);

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

14 SC5407A & SC5408A Programming Manual

5 Query Functions

These functions read back data from the device such as the current device configuration, operating

status, temperature, and other general device information.

5.1 Getting General Device Information

Information such as the product hardware revision, serial number, etc., can be retrieved from the

device using the following code:

deviceInfo_t deviceInfo;

status = GetDeviceInfo(deviceHandle,

 &deviceInfo

);

The deviceInfo_t structure has the following members (see header files for more info):

typedef struct deviceInfo_s

{

 uint32_t productSerialNumber;

 float firmwareRevision;

 float hardwareRevision;

 uint8_t deviceInterface;

 scidate_t calDate;

 scidate_t manDate;

} deviceInfo_t;

5.2 Getting the Device Status

The phase lock loop status of each of the internal synthesizers and the operational configurations

such as the signal path configuration, reference configuration, and local oscillator power status can

be obtained by passing the deviceStatus_t structure into the following function:

deviceStatus_t deviceStatus;

status = GetDeviceStatus(deviceHandle,

 &deviceStatus

);

The members of deviceStatus_t will not be explicitly discussed here as there are many of them.

Please read the scimjdefs.h header file for more details.

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

15 Query Functions

5.3 Getting Other RF Parameters

The RF dynamic parameters such as attenuator values, IF frequencies, LO frequencies, and RF

frequency can be read back using:

rfParams_t rfParams;

status = GetRfParameters(deviceHandle,

 &rfParams

);

The structure of the rfParams_t is:

typedef struct

{

 double frequency; /* the RF frequency */

 double if1Freq; /* the first IF freq */

 double if1FreqAlt; /* the first IF freq for wide IF */

 double if2Freq; /* the second IF freq */

 double if3Freq; /* the third IF freq */

 double lo1Freq; /* the first agile LO freq */

 double lo2Freq; /* the second LO freq */

 double lo3Freq; /* the third LO freq */

 attenuator_t atten; /* the values of the attenuators */

 signalPathParams_t rfPath; /* the signal path config */

} rfParams_t;

5.4 Retrieving the Device Temperature

The device has an internal temperature sensor that reports temperature back in degrees Celsius.

float deviceTemp;

status = GetTemperature(deviceHandle,

 deviceTemp

);

This temperature can be used in computing the conversion gain of the device since gain is a

temperature dependent parameter.

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

16 SC5407A & SC5408A Programming Manual

6 Calibration Functions

These functions utilize the onboard calibration data to compute the conversion gain of the device.

The conversion gain varies with the device configuration such as signal path selection, attenuator

values, and temperature changes. To compute the conversion gain accurately would require two

sets of information: the device configuration and its calibration data.

6.1 Obtaining Calibration Data

There are two ways to read in data from the device:

1. Read data back from the device in a formatted structure.

2. Read data back as an array of raw bytes and then convert the raw bytes into formatted data.

6.1.1 Structured Calibration Data Format

The structure format that holds the calibration data is:

typedef struct calData_s

{

 float **rfCal;

 float **if3AttenCal;

 float **if3ResponseCal;

 float if2filtGainRel;

 float if1filtGainRel;

 float invertGainRel;

 float **if3BpAttenCal;

 float if3BpGainRel;

 float if3BpFiltGainRel;

 float **if2extAttenCal;

 float if2extGain;

 float **ConvBpCal;

 float **tempCoeff;

 float calTemp;

} calData_t;

The following are descriptions of each of the struct members:

rfCal - The RF response calibration includes the absolute gain of the device as a function of

RF frequency under the following conditions:

• All attenuators are set to 0 dB

• All filter selections are in their default state of value 0

• IF3 frequency is set to 240 MHz

The above conditions are the default and all other configuration measurements are made

relative to them. Also included are the RF pre-amplifier gain and the measured attenuation

values at each state of the two RF attenuators. The data is a 63x62 array with the following

layout:

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

17 Calibration Functions

if3AttenCal - Contains the relative measured values corresponding to the attenuation

states of the two IF3 attenuators at a fixed IF of 150 MHz. The 2x30 2D array has the following

layout:

if3ResponseCal - this is the IF frequency relative gain response with respect to 150 MHz.

Relative gain is measured from 50 MHz to 550 MHz for both LPF#1 and LPF#2 of IF3 filter bank

#1 (if2Filter#1). Its 3x30 array has the following layout:

if2FiltGainRel - This is the relative gain difference when selecting the 80 MHz BW

bandpass filter.

if1FiltGainRel - This is the relative gain difference when selecting the narrow BW

bandpass filter.

invertGainRel - This is the relative gain difference when spectral inversion is selected.

freq f0 f1 f2 … fN

absolute gain(f) g(f0) g(f1) g(f2) … g(fN)

preAmp gain(f) ag(f0) ag(f1) ag(f2) … ag(fN)

RF Atten#1 1dB A1_a1(f0) A1_a1(f1) A1_a1(f2) … A1_a1(fN)

RF Atten#1 2dB A1_a2(f0) A1_a2(f1) A1_a2(f2) … A1_a2(fN)

: : : : … :

RF Atten#1 30dB A1_a30(f0) A1_a30(f1) A1_a30(f2) … A1_a30(fN)

RF Atten#2 1dB A2_a1(f0) A2_a1(f1) A2_a1(f2) … A2_a1(fN)

RF Atten#2 2dB A2_a2(f0) A2_a2(f1) A2_a2(f2) … A2_a2(fN)

: : : : … :

RF Atten#2 30dB A2_a30(f0) A2_a30(f1) A2_a30(f2) … A2_a30(fN)

Atten state 1 dB 2 dB 3 dB … 30 dB

IF3 Atten#1 A1_a1 A1_a2 A1_a3 … A1_a30

IF3 Atten#2 A2_a1 A2_a2 A2_a3 … A2_a30

freq f0 f1 f2 … fN

relative gain rg(f0) rg(f1) rg(f2) … rg(fN)

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

18 SC5407A & SC5408A Programming Manual

if3BpAttenCal - This 1x30 1D array is the calibration for IF3 Atten#2 when IF3 conversion is

bypassed, bringing out IF2 directly to the IF3 path, and passing through IF3 Atten#2 and the

final IF amplifier.

if3BpGainRel - This is the relative gain when IF3 conversion is bypassed.

if3BpFiltGainRel - This is the relative gain when IF3 conversion is bypassed and the 1.25

GHz, 80 MHz BW BPF is selected.

if2ExtAttenCal - This 1x30 1D array is the calibration of the attenuator at the input path of

the external IF2 port.

ConvBpCal - This is the calibration of the direct RF to IF3 path, bypassing the conversion stage

altogether. The path does go through the IF3 Atten#2 and the final IF amplifier. The 32x16 2D

array format is:

tempCoeff - This 1D array of size 3 sets of the 2nd order temperature coefficients that are

used to compensate for gain when the operating temperature drifts away from the factory

calibration temperature. The format is:

calTemp - The factory calibration temperature.

State 1 dB 2 dB 3 dB … 30 dB

IF3 Atten#2 A1_a1 A1_a2 A1_a3 … A1_a30

State 1 dB 2 dB 3 dB … 30 dB

IF2Ext Atten A1_a1 A1_a2 A1_a3 … A1_a30

freq f0 f1 f2 … fN

absolute gain(f) g(f0) g(f1) g(f2) … g(fN)

IF3 Atten#2 1dB A2_a1(f0) A2_a1(f1) A2_a1(f2) … A2_a1(fN)

IF3 Atten#2 2dB A2_a2(f0) A2_a2(f1) A2_a2(f2) … A2_a2(fN)

: : : : … :

IF3 Atten#2 30dB A2_a30(f0) A2_a30(f1) A2_a30(f2) … A2_a30(fN)

 Convert Bypass IF Bypass all

Coeff 1 c1 c1 c1

Coeff 2 c2 c2 c2

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

19 Calibration Functions

6.1.2 Reading Formatted Data

Memory must be allocated for the members of struct calData_t prior to passing it through

the GetCalData() function to retrieve calibration data. The minimum memory size requirement

for the arrays are provided in their descriptions above. Their size constants can also be found in

the scimjdefs.h header files. The following code snippet demonstrates how formatted data is

read from the device:

calData_t *calData;

calData->rfCal = (float**)calloc(RFCALPARAMLEN,sizeof(float*));

for(i = 0;i<RFCALPARAMLEN;i++)

calData->rfCal[i]=(float*)calloc(RFCALFREQLEN,sizeof(float));

/* likewise allocate memory to the other struct members */

status = GetCalData(devicehandle,

 calData

);

6.1.3 Reading Raw Calibration Data

Reading the entire calibration data may be longer than what the application desires, so in cases

where data needs to be retrieved faster the data could be stored to file ahead of time and read

back when it is required. Raw data in bytes may be read from the device and stored at a text file

on the host computer. Once the data is read in as a 1D byte array, it will need to be formatted to

be useful. There are two functions provided to perform these tasks: one to read in the raw data

and the other to convert it to formatted data.

unsigned char *rawData;

rawData = (unsigned char*)calloc(RAWDATALEN, sizeof(char));

status = GetRawCalData(deviceHandle,

 rawCalData

);

status = RawToFormatData(rawCalData,

 calData

);

Note that RAWDATALEN is the total number of raw data bytes. This data is stored on the calibration

EEPROM between addresses 0x298 and 0x55FF. See the calibration EEPROM map of the product

hardware manual for more details.

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

20 SC5407A & SC5408A Programming Manual

6.2 Configuring the Gain of the Device Using Calibration

The SC5407A and SC5408A are broadband devices whose RF conversion gain response varies as a

function of frequency, filter selection, and signal path for any given attenuation setting. That is,

setting the attenuators to obtain a certain gain value at one frequency does not guarantee that it

remains the same at another frequency, especially if the other frequency is over a couple of GHz

different. The user can experimentally determine how the attenuators are to be set as a function of

frequency. The resulting gain data can be stored in a table to be read back and applied as frequency

is changed. In effect, the user is performing self-calibration on the device and using the calibration

data in an application.

These devices come with both RF and IF attenuators so that the user has the freedom to set them

accordingly to achieve the desired performance. For more information on how to set these

attenuators to achieve the desired performance, consult the user manual. SignalCore has algorithms

to compute the values of the attenuators such that the device is set up for its best desired

performance. The function CalcAttenValues() will compute the attenuator values based on user

inputs such as frequency, nominal input and output power levels, and linear mode selection. In

addition to these user inputs, it uses calibration data so that the conversion gain is also computed

and returned with the attenuator values. If the device is programmed with the calculated attenuator

values, the computed gain is that of the device to within margin of error.

The following code demonstrates how the gainParams_t structure is used, along with frequency

parameters, calibration data, and temperature, to compute the attenuator values required to

configure the device to the calculated gain.

calData_t *calData;

/* read in calibration data to fill up calData, see GetCalData()

*/

gainParams_t gainParams;

attenuator_t *attenuator; /* receive attenuator values */

float gain; /* receive the computed gain */

gainParams.rfLevel = -10.0;

gainParams.ifLevel = 0.0;

gainParams.linearMode = 0;

status = CalcAttenValues(rfFrequency,

 ifFrequency,

 temperature,

 gainParams,

 calData,

 pathParameters,

 attenuator,

 &gain);

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

21 Calibration Functions

/* apply the calculated attenuator values */

status = SetAttenuator(deviceHandle,

 RFATTEN1,

 Attenuator->rfAtten1Value

);

/* do the same for the rest of the attenuators */

/* use SetSignalPath if configuring the path the first time or

reconfiguring */

status = SetSignalPath(deviceHandle, pathParameters);

If the user prefers to set the attenuator values and the RF amplifier independently from those

calculated by the CalcAttenValues() function, the gain of the device may be computed using

the CalcGain() function, as shown here:

/* fill in the attenuator values, set the pathParameters, then

call */

Status = CalcGain(rfFrequency,

 ifFrequency,

 temperature,

 calData,

 pathParameters,

 attenuator,

 &gain);

The computed gain of the device is approximately the difference between the output RF level and

the input IF level. The step resolution and accuracies of the attenuators limit the gain values, so

although the exact desired gain may not be obtainable, the above 2 functions return a value that is

close to the actual gain of the device for that setting. Notice that in both of these functions, the gain

is not the input parameter to set up the device. Rather, the gain is computed by examining the

settings of the device. In many converter applications, it is easier to think in terms of the expected

IF level and the required RF level, so configuring the device to meet the input and output

requirements is the best way to approach it.

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

22 SC5407A & SC5408A Programming Manual

7 General Functions

These functions may be useful for some applications in that they aid in reading from and writing to

the EEPROMs, making minor frequency adjustments to IF1 and IF2, performing synthesizer self-

calibration, and directly writing the registers.

7.1 Writing to the User EEPROM

These devices have an onboard EEPROM option which is accessible to the user for storing user

information such as system specific data and calibration. Data is written one byte at a time.

unsigned char data = 0xED; /* byte data to be written */

unsigned int memAddress = 0x04; /* address from the data */

status = WriteUserEeprom(deviceHandle,

 memAddress,

 data

);

7.2 Reading from the Calibration and User EEPROMs

Both calibration and user EEPROM data are read back in the form of a byte array. Selection of the

EEPROM, its starting memory address, the length of data to be read back, and an array to receive

the data are passed to the ReadEeprom() function. The code here demonstrates how to read back

the product serial number:

unsigned int startAdd = 0x04;

unsigned int dataLen = 4;

unsigned char receivedBytes[dataLen];

status = ReadEeprom(deviceHandle,

 CALEEPROM,

 startAdd,

 dataLen,

 receivedBytes

);

The serial number is an unsigned 32-bit integer and it needs to be converted to a string format of its

hexadecimal representation, which is the format that is presented in the literature and used to open

a device. Note that data is stored in the calibration EEPROM as little endian. The following is a

method to convert the data to a string format:

char snString[9]; /* 8 chars + termination */

sprintf(snString, “%X”, *(unsigned int*)receivedBytes);

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

23 General Functions

7.3 Configuring the Frequency Plan

There is a function that allows the user to change the frequency of IF1 and IF2, as well as RF and final

IF (IF3) frequencies. However, the latter two parameters can be dynamically changed using the

SetFrequency() and SetIfFrequency() functions respectively. Calling the following function

will make these the default startup parameters:

status = SetFreqPlanParam(deviceHandle,

 rfFrequency,

 if1Frequency,

 if1FrequencyAlt,

 if2Frequency,

 if3Frequency

);

Values for if1Frequency and if1FrequencyAlt are set at the factory and typically the same. If they are

different, their values are within 75 MHz. Due to manufacturing variations in the pass band of the

first IF filter, these values represent the best center frequency of operation. The typical value of IF1

is 7.6 GHz, and the value of IF2 is 1.25 GHz, and their relationship with the second local oscillator

frequency is:

𝐼𝐹1 = 𝐼𝐹2 + 𝐿𝑂2

LO2 is tunable from 6.20 GHz 6.50 GHz in 5 MHz steps. Some practical advantages of moving the IF

frequencies are explained in the Hardware Manual.

7.4 Self-Calibration of the YIG based synthesizer

The YIG based synthesizer is calibrated at the factory and the calibration is sufficient for the circuitry

to maintain lock with the calibration cycle of 2 years. By design, after factory calibration the

synthesizer should remain frequency locked for periods of more than10 years if its temperature does

not deviate from its calibration temperature (typically about 42°C, ±5°C). The procedure can be run

more frequently to ensure the circuit is always optimized despite changes in component

characteristics over time and temperature. Once this function is executed, the program should wait

for 7 to 10 seconds to complete. Upon a successful calibration, it will update the calibration EEPROM

at address 0x1C with 1, otherwise 0.

Note that the following function returns immediately before the calibration procedure is completed.

status = SetSynthSelfCal(deviceHandle);

7.5 Write Registers

Direct access to the device configuration registers is performed using the RegWrite() function. The

parameter regByte is the register address, and these addresses are provided in the scimjregs.h

header file. While the register addresses are found in the header file, their map and definition are

provided in the Hardware Manual. The instructWord parameter is unsigned 64-bit data associated

with the register. Using this function, the input frequency of the device can be programmed as

follows:

Rev 2.0 | SC5407A & SC5408A Programming Manual SignalCore, Inc.

24 SC5407A & SC5408A Programming Manual

unsigned char register = RF_FREQUENCY;

unsigned long long regData = 2000000000;

status = RegWrite(deviceHandle,

 register,

 regData

);

7.6 Read Registers

Directly requesting data from the device is performed using RegRead(). The function has the

following form (from the mjfunctions.h header file):

SCISTATUS RegRead(HANDLE deviceHandle,

 uint8_t regByte,

 uint64_t instructWord,

 uint64_t *receivedWord);

Here regByte is the register address, instructWord specifies what returned data associated with

the register is requested, and the receivedWord holds the returned data. Registers that return

data are referred to as query registers, and in many of these the parameter instructWord is set

to 0 (zero) or simply ignored by the device. However, there are others whose instructWord

requires non-zero input. For example, to obtain the current IF1 frequency instructWord is 1, and

the code is:

unsigned long long instruct = 1;

unsigned long long receivedData;

status = RegRead(deviceHandle,

 GET_DEVICE_PARAM,

 instruct,

 &receivedData);

©2017 | SC5407A & SC5408A Programming Manual Rev 2.0

25 Revision Notes

8 Revision Notes

Revision Revision
Date

Description

1.0 04/27/2017 First Released Version

1.1 09/24/2018 Edited for clarity

2.0 06/24/2020 Reformatted
Removed Appendix and outdated address
Updated 6.1.1 Structured Calibration Data Format

