
© 2022 SignalCore, Inc. All Rights Reserved

Programming Manual
SC5319A & SC5320A

20 GHz to 40 GHz RF Downconverter

Preliminary Rev 1.0

www.signalcore.com

https://www.signalcore.com/index.html

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

1 Introduction

Table of Contents

1 Introduction .. 3

2 Driver Architecture .. 4

2.1 API Function Names and Call Type .. 4

2.2 Compiling Code in C/C++ ... 5

3 Identifying, Opening, and Closing Devices ... 6

3.1 Identifying Devices on the Host Computer .. 6

3.2 Opening and Connecting to a Device .. 7

3.3 Disconnecting from and Closing a Device .. 7

3.4 Multiple Devices .. 7

3.5 Initialize Device .. 7

4 Configuration Functions .. 9

4.1 Setting the Frequency at the Ports .. 9

4.2 Configuring the Conversion Signal Path .. 10

4.2.1 Enabling the RF Preamplifier ... 10

4.2.2 Setting the Attenuators ... 10

4.2.3 Setting the IF Filter Bandwidth .. 10

4.2.4 Setting the IF Output ... 10

4.2.5 Setting the IF Sideband .. 11

4.2.6 Automatic Configuration of the Conversion Gain .. 11

4.3 Selecting the LO source ... 12

4.3.1 Setting the Internal Synthesizer Mode .. 12

4.3.2 Self-Calibrating the Internal Synthesizer ... 13

4.4 Configuring the Reference Mode .. 13

4.4.1 Adjustment to the Internal OCXO Clock .. 13

4.5 Saving the New Default State of the Device .. 14

4.6 Register Write ... 14

5 Query Functions .. 15

5.1 Getting General Device Information ... 15

5.2 Getting the Device Status .. 15

5.3 Getting Other RF Parameters .. 16

5.4 Retrieving the Device Temperature .. 16

5.5 Retrieving the Conversion Gain ... 16

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

2 SC5319A & SC5320A Programming Manual

5.6 Retrieving the Calibration Data ... 16

5.7 Register Read... 17

6 Advance Functions .. 18

6.1 Reading the EEPROM .. 18

6.2 Storing the Auto Conversion Parameters .. 18

6.3 Obtaining the Auto Conversion Computed Attenuator Values ... 18

6.4 Fetch Raw Calibration Data ... 19

6.5 Converting Raw Data to Formatted Calibration Data .. 19

6.6 Allocating and Deallocating Memory for the Calibration Data .. 19

6.7 Handling Calibration Data Example ... 19

Appendix A – mj3_functions.h .. 20

Revision Table.. 24

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

3 Introduction

1 Introduction

The SC5319A and SC5320A are C to K broadband single stage downconverters, with input RF range

from 20 GHz to 40 GHz, external LO frequency range from 10 GHz to 20 GHz, and output IF range

from 100 MHz to 5 GHz. These modules feature an internal synthesized local oscillator, RF

preamplifier, and variable gain control, making them compact and versatile modules. With the

option for an external LO signal, the SC5319A and SC5320A may be configured for SISO applications

or paired together with multiple units for MIMO applications such as ground-based satellite

communications, point-to-point radio, and test instrument systems.

This manual serves as a programming guide for those using the WindowsTM software API to program

these devices for the purpose of communicating with them through a host computer via the PXIe,

USB or RS232 bus. Contact SignalCore for Linux code using the USB interface. This document is

structured into sections that describe the generic use of the product’s functions such as searching

for available devices, opening a device, changing the conversion parameters, obtaining gain

correction using calibration data, and putting the device into power standby.

This manual will explain each function in detail, including the purpose of the function and what each

of its parameters mean. Wherever applicable, snippets of C/C++ code are provided as examples on

how to effectively use a function.

SignalCoreTM a registered trademark of SignalCore Incorporated, USA. SignalCoreTM is referred to as SignalCore in this manual.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States and/or other countries.

Trade names are trademarks of their respective owners.

© 2021 SignalCore Incorporated, USA

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

4 SC5319A & SC5320A Programming Manual

2 Driver Architecture

The SC5319A is a PXIe based product, while the SC5320A is controlled through USB and RS232 or

SPI. The code name for this product is MockingJay III, shortened to mj3, and this is the name prefix

used for the function names of the API.

The software flow to writing a user application is shown in Table 1. At the highest level, where the

user application resides, are the user code and header file(s) (*.h) for the device API. The level below

that has the device API DLL and Library, which are called by the application level. The lowest level is

where the device system driver or the kernel level drivers (*.sys) resides.

Table 1. Software Architectures

 Files Interface

User application userapp.c

Headers sci_errors.h

sci_types.h

mj3_defs.h

mj3_functions.h

All

API mj3.dll

mj3.lib
All

Driver Libusb-1.0.dll

Winusb.sys
USB

scipcioxi.sys PXI

2.1 API Function Names and Call Type

All three interfaces will use the same API. The function names are prefixed with mj3_, such as

“mj3_SetFrequency”. All functions are of call type __cdecl for win32 in WindowsTM.

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

5 Driver Architecture

2.2 Compiling Code in C/C++

All necessary header files must be included to successfully compile application code that uses the

API. Table 2 list all these header files.

Table 2 API header files

The first 4 header files listed in Table 2 are necessary for all programs that use the API. The mj3_reg.h

file is helpful if one decides to program the device using register calls. The mj3_advance.h lists lower-

level functions that the primary functions listed in mj3_functions.h uses. The brief comments above

the function names provide usage information. These mj3_function.h function prototypes are listed

in appendix A.

Table 3 Library files and DLL

Header files Description

sci_types.h Defined types used by the API

sci_errors.h API error types

mj3_defs.h API macros and structures

mj3_functions.h API functions header

mj3_regs.h List of device registers

mj3_advance.h Advance functions (not commonly used)

Header files Description

mj3.lib Required for all interfaces

mj3.dll

libusb-1.0.lib Required only for USB

libusb-1.0.dll

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

6 SC5319A & SC5320A Programming Manual

3 Identifying, Opening, and Closing Devices

The SC5319A and SC5320A downconverters are identified by their unique serial numbers. This serial

number is passed to the mj3_OpenDevice() function as a string in order to open a connection to

the device and retrieve a device handle. The string consists of 8 HEX format characters such as

100E4FC2.

3.1 Identifying Devices on the Host Computer

The serial number is found on the product label, attached to the outer body of the product. However,

if the serial number cannot be found, there is a function to obtain the current devices connected to

the host computer. The mj3_SearchDevices() function scans the host computer for SC5319A or

SC5320A devices. If found, a list containing the number of devices and their corresponding serial

numbers is returned. The function is declared as:

SCISTATUS mj3_SearchDevices(sci_comm_interface_t interface, char

**serial_number_list, int *number_devices);

The first parameter informs the function to search a particular interface: PCI_INT (0), USB_INT (1),

or RS232_INT(2). The **serial_number_list is a list of serial number strings for PXI and USB

interfaces, but it is a list of COM ports for RS232. The parameter *number_devices is the number

of devices detected and available for connection. The following code snippet demonstrates how to

prepare to call this function.

SCISTATUS status;

char **serialNumbers;

int i, nDevices;

serialNumbers = (char**)malloc(sizeof(char*)*MAXDEVICES);

 for (i=0;i<MAXDEVICES; i++)

 serialNumbers[i] =

(char*)malloc(sizeof(char)*SCI_SN_LENGTH);

/*

 MAXDEVICES is the number of devices to allocate memory for.

 SCI_SN_LENGTH is defined 0x09.

*/

 Status = mj3_SearchDevices(serialNumbers,

 &nDevices

);

 if(status != SCI_SUCCESS)

 ...error handling, free allocated memory...

It is important to free all allocated memory immediately once it is not in use. The following code lines

show how to deallocate the memory used to hold the serial numbers.

for(i=0;i<MAXDEVICES; i++)

 free(serialNumbers[i]);

free(serialNumbers);

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

7 Identifying, Opening, and Closing Devices

3.2 Opening and Connecting to a Device

The first step to communicating with the device is to open a connection to it from the host computer.

The following code is an example of how this is done using the mj3_DeviceOpen() function. The

function returns a HANDLE to the device that is needed by subsequent function calls to the device.

SCISTATUS status;

HANDLE deviceHandle;

Uint8_t baudrate = 0;

Status = mj3_DeviceOpen(USB_INT, “<serial number string>”,

baudrate, &deviceHandle);

The “<serial number string>” of type char can be substituted by the serialNumber[i]

as found in the previous code example or typed in directly. Upon successfully executing this function,

the device active LED on the front panel will turn green. When mj3_DeviceOpen() is executed, it

will retrieve the current device’s rf parameters and hold it in host memory to be used by other

functions but it does not apply any changes to the state of the device; its working state remains

unchanged by this function. Note that the parameter baudrate is the rate for RS232

communication and the valid values are 0 and 1, denoting rates of 57600 and 115200 respectively.

This parameter is ignored for PXIe and USB interfaces.

3.3 Disconnecting from and Closing a Device

When the device is no longer in use, the application should disconnect it from the host computer.

This is done by using the mj3_DeviceClose() function. Once it is executed, the active LED on the

front panel will turn off, all device data will be freed, and the HANDLE to the device will no longer be

valid for further use.

status = mj3_DeviceClose(deviceHandle);

deviceHandle = NULL;

3.4 Multiple Devices

Multiple devices may be opened simultaneously within one application. The mj3_DeviceOpen()

function must be called for each of the devices using their respective interfaces and serial numbers.

The HANDLE returned by each call is unique to each device and must be used for subsequent calls

only on the device from which it is returned. When a device is “opened” by an instance, it cannot be

accessed by another instance until mj3_DeviceClose() is called.

3.5 Initialize Device

To initialize the device to its reset state or power-up state, use the following code example.

#define RESET_STATE 1;

#define CURRENT_STATE 0;

Status = mj3_InitDevice(deviceHandle, RESET_STATE);

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

8 SC5319A & SC5320A Programming Manual

In the example above, if the value 0 or CURRENT_STATE is written, the device will reprogram all the

hardware to its current state. That is, the state does not change, but the hardware components are

refreshed.

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

9 Configuration Functions

4 Configuration Functions

These functions set the device configuration parameters such as frequency, attenuation, filters, and

signal path.

4.1 Setting the Frequency at the Ports

These devices are single stage converters with one LO. Controlling the LO determines what the IF

will be for a given RF or what the RF will be for a given IF. The relationship between LO, RF and IF is

provided here:

𝐿𝑂 = 𝑅𝐹 ± 𝐼𝐹

From the equation, another way of looking at it is, for a given LO, there can be two RF values that

will result in the same IF. If RF < LO, we get the lower sideband where the IF spectrum is inverted.

Choosing RF > LO results in a non-inverted spectrum at the IF with the upper sideband.

There are 2 ways to set the LO frequency: set it using RF, IF, and the selected sideband or set it

directly. The first method sets the LO as follows:

𝐿𝑂 = 𝑅𝐹 − 𝐼𝐹 𝑖𝑓 𝑢𝑝𝑝𝑒𝑟 𝑠𝑖𝑑𝑒𝑏𝑎𝑛𝑑

𝐿𝑂 = 𝑅𝐹 + 𝐼𝐹 𝑖𝑓 𝑙𝑜𝑤𝑒𝑟 𝑠𝑖𝑑𝑒𝑏𝑎𝑛𝑑

To set the device to convert the RF to IF for a selected sideband, first set the sideband using the

function mj3_SetSideband(). This is an important step. Not only will it help to properly compute

the LO frequency, but it also switches in the proper RF hybrid circuit to suppress the unwanted

sideband signal. Next call the mj3_SetIfFrequency() and mj3_SetRfFrequency(), the order

is not important. To tune to the next RF, simply call mj3_SetRfFrequency(); the other functions

do not need to be called if their values remain unchanged. The internal LO frequency is computed

and set based on these function calls. The following code demonstrates this.

double rf_frequency = 23.5e9; // 23.5 GHz

double if_frequency = 1.25e9; // 1.25 GHz

uint8_t sideband = 0; //upper sideband

status = mj3_SetSideband(dev_handle, sideband);

status = mj3_SetIfFrequency(dev_handle, if_frequency);

status = mj3_SetRfFrequency(dev_handle, rf_frequency);

/* do something, wait, etc */

status = mj3_SetRfFrequency(dev_handle, rf_frequency + 100e6);

 //increment to downconvert 23.60 GHz

The internal LO frequency is obtained by fetching its value with the mj3_FetchRfParameters()

function, which is discussed in detail in section 5. Note that this LO frequency is the value at the

mixer port and is double the frequency of the internal synthesizer or an external source.

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

10 SC5319A & SC5320A Programming Manual

4.2 Configuring the Conversion Signal Path

The device has the option to bypass conversion by directing the input RF signal directly to the IF

output port. The function mj3_SetBypassConversion() will enable/disable this behavior. When

bypass is enabled, the internal synthesizer will go into standby mode, the attenuators will be set to

the highest attenuation level, and the internal IF will be terminated to ground (disabled).

In the conversion path there are configurable gain adjustments via the step attenuators, rf pre-

amplifier, programmable IF filter bandwidths, and conversion sideband options. Registers and

corresponding API functions to control each of these choices are provided and are discussed next.

4.2.1 Enabling the RF Preamplifier

The RF preamplifier can be enabled or disabled using the mj3_SetRfPreamp() function and its

usage is shown in the following code:

uint8_t preampEnalbe = 1;

Status = mj3_SetRfPreamp(deviceHandle, preampEnable);

4.2.2 Setting the Attenuators

These devices have 2 programmable attenuators: one in the RF input section, and the other in the

IF output section. The RF attenuator has 0.5 dB step resolution with a maximum attenuation value

of 31.5 dB, while the IF attenuator has 0.25 dB step resolution with a maximum attenuation value

of 31.75 dB. Numbers that represent these attenuators ,as defined in the header files, are:

#define RFATTEN 0

#define RFATTEN 1

To set the attenuators to a certain value, use the function mj3_SetAttenuator(). As an example,

the following code snippet sets the first RF attenuator to 10 dB and the final IF attenuator to 5.25

dB.

status = SetAttenuator(deviceHandle, RFATTEN, 10.00);

status = SetAttenuator(deviceHandle, IFATTEN, 5.25);

4.2.3 Setting the IF Filter Bandwidth

The IF filter is a programmable 4-bit lowpass filter bank, with 16 levels of bandwidths. At the lowest

value the bandwidth is about 3 GHz, and at the highest value the bandwidth is about 5 GHz. The

function mj3_SetIfFilter() is called to set the desired bandwidth, and its usage is:

uint8_t filterBw = 10;

status = mj3_SetIfFilter(deviceHandle, filterBw);

4.2.4 Setting the IF Output

The IF output can be disabled or enabled, and when it is disabled, its signal is terminated to ground.

If conversion bypass is enabled, setting the IF output to enable will be ignored because the device

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

11 Configuration Functions

cannot have both the bypass signal and the IF signal be at the output at the same time. The

controlling function is mj3_SetIfOutput().

4.2.5 Setting the IF Sideband

This function properly switches in the proper 90O hybrid to select either the lower or upper sideband

signal. Its selection also affects how the LO frequency is computed for a given RF and IF, as seen

earlier in section 4.1. The function mj3_SetSideband() performs this task.

4.2.6 Automatic Configuration of the Conversion Gain

The user may manually configure the conversion gain (loss) of the converter device by adjusting the

RF and IF attenuators, and enabling or disabling the RF preamplifier. The gain can be approximated

by using the following equation:

𝐺𝑎𝑖𝑛 = 𝐺𝑎𝑖𝑛𝑚𝑎𝑥 + 𝐺𝑎𝑖𝑛𝑟𝑓𝑎𝑚𝑝 − 𝐴𝑡𝑡𝑒𝑛𝑅𝐹 − 𝐴𝑡𝑡𝑒𝑛𝐼𝐹

𝐺𝑎𝑖𝑛𝑚𝑎𝑥 and 𝐺𝑎𝑖𝑛𝑟𝑓𝑎𝑚𝑝 can be approximated from datasheet specifications or read back using the

mj3_FetchMaxGain()function, see section 5. Care must be exercised when setting the

attenuators and enabling the RF preamplifier, because the converter’s linearity and signal sensitivity

depends on their configuration. For example, having more attenuation in the IF section helps with

reducing the gain and maintaining good signal sensitivity but it could degrade the device linearity.

On the other hand, having more attenuation in the RF section improves linearity but degrades signal

sensitivity. Enabling the RF preamplifier should only be done to improve the sensitivity when lower-

level signals (< 30 dBm or less) are expected.

Another way to configure the device for gain is to use the automatic conversion gain function

provided, which computes better gain accuracy (typical within 1.0 dB) because it uses frequency

dependent calibrated data that is stored in the device memory. The function takes in user

parameters and uses them to compute and set the attenuators and optionally the RF preamplifier

to best achieve the linearity requirement and achieve the desired gain. These parameters, listed in

a type-defined structure called auto_conv_params_t, are shown here:

typedef struct

{

float rf_level; //expected rf level input

float mixer_level; //max desired level at mixer input

float if_level; //expected if level output

uint8_t linearity_mode; //linear modes: 0=mixer level control,

1=balance of snr and linearity, 2=better snr, best snr,

better linearity, best linearity

uint8_t auto_amp_ctrl; //allows the preamplifier state to be

changed to achieve the desired results

uint8_t hw_auto_conv; //hardware does the computation to set

the device to achieve the desired results. Not

recommended when using the API and should be set to 0.

} auto_conv_params_t;

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

12 SC5319A & SC5320A Programming Manual

When this structure, with its members being defined, is passed to the

mj3_SetAutoConversion() function, the attenuator values are computed and set, and the RF

preamplifier enabled or disabled accordingly. This function must be called when a new RF, IF or LO

frequency, or a combination of these frequencies is changed to obtain the new gain value and have

device properly configured at these new frequencies automatically. An example to use this function

is listed below.

auto_conv_params_t conv_params;

float conv_gain;

conv_params.rf_level = -10; // -10 dbm expected input level

conv_params.mixer_level = -20; // max desired rf level at the mixer,

matters only if linearity_mode = 0

conv_params.if_level = 0; // 0 dbm desired output level

conv_params.linearity_mode = 1; // select a balance of sensitivity

and linearity

conv_params.auto_amp_cntrl = 1; // allows the algorithm to decide

on the state of the rf preamp

conv_params.auto_conv_enable = 1;

status = setautoconversion(devicehandle, &conv_params, &conv_gain);

The last parameter auto_conv_enable, when enabled, will continuously calculate, and apply

attenuator values and preamplifier state to keep the gain as constant as possible, when frequency

parameters, such as RF frequency and IF frequency, are changed.

4.3 Selecting the LO source

The converter has the option to use the internal synthesizer or an external source as the local

oscillator (LO) by using the function mj3_SetLoSource(); If the source is selected internal, the internal

synthesizer will turn on and get out of its standby mode, and if it is selected external the internal

synthesizer will go into standby mode. When the internal synthesizer is selected, its signal is also

routed out via the LO in/out port at half the frequency of the LO frequency.

4.3.1 Setting the Internal Synthesizer Mode

The synth_mode_t defined structure contained the synthesizer mode options:

 typedef struct

 {

 uint8_t lock_mode;

 uint8_t loop_gain;

 uint8_t auto_spur_suppress;

 } synth_mode_t;

The lock_mode specifies whether the synthesizer uses either the (0) harmonic phase locking method

or the (1) traditional integer-N locking method in the coarse frequency synthesis. The loop gain of

the synthesizer can be changed to shape the phase noise spectral density of the signal. The default

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

13 Configuration Functions

(0) is the higher gain loop and other (1) is the lower gain loop. The auto_spur_suppress option causes

the synthesizer to bounce from harmonic to integer-N locking method to lower spur levels of the

specified LO frequency. The following code demonstrates how the settings are written.

synth_mode_t synthMode;

synthMode.lock_mode = 0; //harmonic mode

synthMode.loop_gain = 0; //normal gain

synthMode.auto_spur_suppress = 0; // keep the mode on harmonic for

better phase noise

status = mj3_setSynthMode(devicehandle, &synthMode);

4.3.2 Self-Calibrating the Internal Synthesizer

Over temperature and time, the resonance frequencies of the oscillators of the internal synthesizer

may drift far enough that at certain frequency regions the phase lock loops may not be able to

properly achieve lock, causing frequency errors. Should these occur, the internal self-calibration

procedure may help to resolve this issue. The function to start the procedure is

mj3_SynthSelfCalibrate(). It is important that no other communication takes place when the

procedure has started to reduce error. The LO status LED flash red/amber/green during the

calibration procedure and returns green after a few seconds when it had completed.

4.4 Configuring the Reference Mode

The reference configuration does 2 or 3 things, depends on the product. For a product with USB

control the two parameters are lock_external and ref_dir, and for a PXIe product there is the

additional pxi10_enable. The function to configure the reference is mj3_SetReferenceMode(),

which takes all three parameters, however pxi10_enable is only used if the interface is PXI. The

lock_external parameter causes the device to lock to an external 10 MHz reference source, while

ref_dir sets the Reference port to either receive an external source signal or put out the device

internal reference signal. An example below shows how this function is used:

uint8_t lockExt = 1; // enable locking to external source

uint8_t pxi10_enable = 0;

uint8_t ref_dir = 0; //set to receive

status = mj3_SetReferenceMode(deviceHandle, ref_dir, pxi1_enable,

lockext);

4.4.1 Adjustment to the Internal OCXO Clock

The device has a OCXO timebase, whose frequency accuracy may be adjusted via a DAC. When the

device is not locked to an external reference source, it uses its internal OCXO as the reference. The

current value of the DAC can be retrieve with the mj3_FetchRfParameters() function.

Adjustments for this value adjusts the OCXO clock, calibrating its frequency.

uint16_t ocxoDac = 0x2E0A; /* value range of 0x00 to -x3FFF */

status = mj3_SetReferenceAdjust(deviceHandle, ocxoDac);

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

14 SC5319A & SC5320A Programming Manual

4.5 Saving the New Default State of the Device

The current operating state of the device, including the new OCXO DAC value as discussed above,

can be stored as the device default by calling the mj3_SetDefaultState() function. Once this

function is executed, the current state will be the device reset and power up default state. This is

done by using the following code.

status = mj3_SetDefaultState(deviceHandle);

4.6 Register Write

Direct access to the device configuration registers is performed using the mj3_RegWrite()

function.

 mj3_RegWrite(HANDLE dev_handle,

 uint8_t reg_byte,

 uint64_t instruct_word);

The parameter reg_byte is the register address, and these addresses are provided in the

mj3_regs.h header file. While the register addresses are found in the header file, their map and

definition are provided in the Hardware Manual. The instruct_word parameter is an unsigned 64-bit

data associated with the register. Using this function, the input RF frequency of the device can be

programmed as follows:

uint8_t register = RF_FREQUENCY;

uint64_t reg_data = 28000000000; //28 GHz

status = RegWrite(deviceHandle,

 register,

 reg_data

);

Using the mj3_RegWrite() function to the change the device RF frequency will affect the device only

but will not register with the API so it is not advised to directly access the device unless necessary,

especially when other API functions are used.

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

15 Query Functions

5 Query Functions

These functions read back data from the device such as the current device configuration, operating

status, temperature, and other general device information.

5.1 Getting General Device Information

Information such as the product hardware revision, serial number, and more can be retrieved from

the device using the following code.

deviceInfo_t deviceInfo;

status = mj3_FetchDeviceInfo(deviceHandle,

 &deviceInfo);

The deviceInfo_t structure has the following members (see header files for more info).

typedef struct device_info_t
{
 uint32_t product_serial_number;
 float hardware_revision;
 float firmware_revision;
 uint8_t device_interfaces;
 struct date
 {
 uint8_t year; // Add in the millennia 2000
 uint8_t month;
 uint8_t day;
 uint8_t hour;
 } man_date;
} device_info_t;

 Device_interfaces: 0 = unassigned, 1 = PXI/PXIe, 2 = USB&SPI, 3 = USB&RS232

5.2 Getting the Device Status

The phase lock loop status of each of the internal synthesizers and the operational configuration

such as the signal path configuration, reference configuration, and local oscillator power status can

be obtained by passing the deviceStatus_t structure into the following function.

device_status_t deviceStatus;

status = mj3_FetchDeviceStatus(deviceHandle,

 &deviceStatus

);

The members of device_status_t will not be explicitly discussed here as there are many of them.

Please read the mj3_defs.h header file for details.

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

16 SC5319A & SC5320A Programming Manual

5.3 Getting Other RF Parameters

The RF dynamic parameters such as attenuator values, IF frequencies, LO frequencies, and RF

frequency can be read back using the following code.

rf_params_t rfParams;

status = mj3_FetchRfParameters(deviceHandle, &rfParams);

The structure of the rfParams_t is as follows.

typedef struct

{

 double rf_frequency; // rf port frequency

 double if_frequency; // if port frequency

 double lo_frequency; // lo frequency

 uint16_t reference_dac; //Reference DAC adjustment value

 conv_path_t path_params; //conversion path information

 attenuator_t atten; // attenuators

 auto_conv_params_t conv_params; //auto_conversion parameters

} rf_params_t;

For details of the rf_params_t members, refer to the mj3_defs.h header file.

5.4 Retrieving the Device Temperature

The device has an internal temperature sensor that reports temperature back in degrees Celsius.

float deviceTemp;

status = mj3_FetchTemperature(deviceHandle, &deviceTemp);

This temperature can be used in computing the conversion gain of the device, as gain is a

temperature dependent parameter.

5.5 Retrieving the Conversion Gain

The calibrated conversion gain of the current device settings can be obtained with the following:

float convGain;

status = mj3_FetchConvGain(deviceHandle, &ConvGain);

5.6 Retrieving the Calibration Data

Should there be a need to view the calibration data used in the compute the calibrated conversion

gain, the following does it.

cal_data_t *cal_data= (cal_data_t*)malloc(sizeof(cal_data_t));

status = = mj3_FetchCalData(deviceHandle, &cal_data);

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

17 Query Functions

5.7 Register Read

Directly requesting data from the device is performed using mj3_RegRead(). The function has the

following form (from the mj3_functions.h header file).

SCISTATUS RegRead(HANDLE deviceHandle,

 uint8_t reg_byte,

 uint64_t instruct_word,

 uint64_t *received_word

);

Here, regByte is the register address, instruct_word specifies what returned data associated

with the register is requested, and received_word holds the returned data. Registers that return

data are referred to as query registers, and in many of these the parameter instruct_word is set

to 0 (zero) or simply ignored by the device. However, there are others whose instruct_word

requires non-zero input. For example, to obtain the current IF frequency instruct_word as 1, see

the following code:

uint64_t instruct = 1;

uint64_t receivedData;

double if_frequency;

status = mj3_RegRead(deviceHandle,

 GET_DEVICE_PARAM,

 instruct,

 &received_data);

if_frequency = (double)received_data;

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

18 SC5319A & SC5320A Programming Manual

6 Advance Functions

These lower-level functions listed in the mj3_advance.h header file are used by the functions

described earlier in sections 3 to 5, and have the prefix mj3adv_. They are listed here for the sake

of completeness and usefulness for the user.

6.1 Reading the EEPROM

This device has an onboard EEPROM that contains device specific data and calibration. The following

reads all the calibration data into a buffer.

uint32_t cal_start_add = CALDATAMEMADD;

uint32_t cal_len = CALDATALEN;

uint8_t eeprom = EEPROM0;

uint8_t *byte_data_buf = (uint8*)malloc(sizeof(uint8_t)*

CALDATALEN);

status =mj3adv_ReadEeprom(deviceHandle, eeprom, cal_start_add,

 cal_len, byte_data_buf);

Another example is to read back the product serial number located at the EEPROM address 0x04.

uint32_t start_add = 0x04;

uint32_t dataLen = 4;

uint8_t received_bytes[dataLen];

status = ReadEeprom(deviceHandle, EEPROM0, start_add,

 dataLen, received_bytes);

The serial number is a 4 byte number and it needs to be converted to a string format of its

hexadecimal representation, which is the format that is presented in the literature and used to open

a device. Note that data is stored in the calibration EEPROM as little endian. The following is a

method to convert the data to a string format.

char snString[9]; /* 8 chars + termination */

sprint(snString, “%X”, *(uint32_t*)received_bytes);

6.2 Storing the Auto Conversion Parameters

The function mj3adv_SaveAutoConvParams() is executed when the mj3_DeviceClose()

function is called. It stores the auto conversion parameters into the device EEPROM memory so that

on powerup or when the device instance is opened, they read into host memory. The user may call

this function anytime to ensure these parameters are stored.

6.3 Obtaining the Auto Conversion Computed Attenuator Values

The function mj3adv_AutoCalcAttenValues() calculates the values of the attenuators used to

set the device using the same auto-conversion algorithm in function mj3_SetAutoConversion(),

however unlike mj3_SetAutoConversion() it does not apply the values to the device.

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

19 Advance Functions

6.4 Fetch Raw Calibration Data

The function mj3adv_FetchRawCalData() reads the entire data buffer in bytes. It does the same

job as illustrated in the mj3adv_ReadEeprom() example of section 6.1 above.

6.5 Converting Raw Data to Formatted Calibration Data

Raw calibration data is converted to formatted calibration data before it can be used to compute for

conversion gain by calling mj3adv_RawToCalData().

6.6 Allocating and Deallocating Memory for the Calibration Data

Data needs a space in memory so that it can be used by the application instance, and the function

mj3adv_AllocateCalDataMemory() simplifies the task. When calibration data is no longer

needed, it can be deallocated using mj3adv_DeallocateCalDataMemory().

6.7 Handling Calibration Data Example

It is not necessary for the user to create another set of calibration data for the user application in

addition to that which is already in API memory. However, should the user want to do this the

following is an example code.

uint8_t* raw_data = (uint8_t*)malloc((CALDATALEN + 8) * sizeof(uint8_t));

cal_data_t* cal_data = (cal_data_t*)malloc(sizeof(cal_data_t));

status = mj3adv_FetchRawCalData(deviceHandle, raw_data);

status = mj3adv_AllocateCalDataMemory(cal_data);

status = mj3adv_RawToCalData(raw_data, cal_data);

free(rawData);

//do something…

mj3adv_DeallocateCalDataMemory(cal_data);

free(cal_data);

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

20 SC5319A & SC5320A Programming Manual

Appendix A – mj3_functions.h
/*
 * Header functions for MockingJay III converters
 *
 *
 * Copyright (c) 2021 SignalCore Inc.
 *
 * Rev 1.0.0
*/

#ifndef MOCKINGJAY3_FUNCTIONS_H__
#define MOCKINGJAY3_FUNCTIONS_H__

#ifdef __cplusplus
extern "C"
{
#endif

/* Export Function Prototypes */

/* Function to find the serial numbers of all SignalCore device with the same product ID
 return: The number of product devices found
 input: comm_interface enum {USB, RS232, PXI}
 output: 2-D array (or pointers) to pass out the list serial numbers for devices found
 Example, calling function could declare:
 char **serial_number_list;
 sNList = (char**)malloc(sizeof(char*)*50); // 50 serial numbers
 for (i=0;i<50; i++)
 searchNumberList[i] = (char*)malloc(sizeof(char)*SCI_SN_LENGTH);
 and pass searchNumberList into the function.
*/
SCISTATUS __cdecl mj3_SearchDevices(sci_comm_interface_t comm_interface,
 char **serial_number_list, int *number_devices);

/* Same as above for LabVIEW calls
*/
SCISTATUS __cdecl mj3_SearchDevicesLV(sci_comm_interface_t comm_interface,
 char *serial_number_list, int *number_devices);

/* Function opens the target device.
 return: pointer to device handle
 input: -comm_interface enum {USB, RS232, PXI}
 -rate ignore for PXI and USB. For RS232 0=>baud=57600, 1=>baud=115200
 -devSerialNum is the product serial number. Product number is available on
 the product label.
*/
SCISTATUS __cdecl mj3_OpenDevice(sci_comm_interface_t comm_interface,
 char *devSerialNum, uint8_t rate, PHANDLE dev_handle);

/* Function closes the device associated with the handle.
 return: error code
 input: device handle
*/
SCISTATUS __cdecl mj3_CloseDevice(HANDLE dev_handle);

/* Register level access function prototypes
 ===
*/

/* Writing the register with via the USB device handle allocated by OpenDevice
 return: error code
 input: commandByte contains the target register address, eg 0x10 is the frequency register
 input: instructWord contains necessary data for the specified register address
*/
SCISTATUS __cdecl mj3_RegWrite(HANDLE dev_handle,
 uint8_t command_byte,

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

21 Appendix A – mj3_functions.h

 uint64_t instruct_word);

/* Reading the register with via the USB device handle allocated by OpenDevice
 input: commandByte contains the target register address, eg 0x10 is the frequency register
 input: instructWord contains necessary data for the specified register address
 output: receivedWord is the return data request through the commandByte and instructWord
*/
SCISTATUS __cdecl mj3_RegRead(HANDLE dev_handle,
 uint8_t command_byte,
 uint64_t instruct_word,
 uint64_t *received_word);

/* Product configuration wrapper function prototypes
 ===
*/
/* Initializes the device
 return: error code
 input: Mode 0: The device initializes to the power up state
 1: The device reprograms all internal components to the current device
 state
*/
SCISTATUS __cdecl mj3_InitDevice(HANDLE dev_handle, uint8_t mode);

/* Sets the device RF port frequency
return: error code
input: frequency in Hz. If outside of this range, the return is OUTOFRANGE.
*/
SCISTATUS __cdecl mj3_SetRfFrequency(HANDLE dev_handle, double freq);

/* Sets the device RF port frequency
return: error code
input: frequency in Hz. If outside of this range, the return is OUTOFRANGE.
*/
SCISTATUS __cdecl mj3_SetIfFrequency(HANDLE dev_handle, double freq);

/* Sets the device RF port frequency
return: error code
input: frequency in Hz. If outside of this range, the return is OUTOFRANGE.
*/
SCISTATUS __cdecl mj3_SetLoFrequency(HANDLE dev_handle, double freq);

/* Sets the RF1 Synth pll mode. harmonic is best for phase noise
return: error code
input: low_freq_mode: RF synthesizer to generate freqs down to 0) 25 MHz, 1) 50 MHz. Lower freq is
from DDS
 low_loop_gain: 0 normal loop gain, 1 low loop gain. Low loop gain generally gives better spur
suppression
 lock_mode: 0 = harmonic (default), 1=fractN
*/
SCISTATUS __cdecl mj3_SetSynthMode(HANDLE dev_handle, synth_mode_t *synth_mode);

/** Sets the LO source (internal or external)
return: error code
input: lo_select 0:internal 1:external (internal LO powers down)
*/
SCISTATUS __cdecl mj3_SetLoSource(HANDLE dev_handle, uint8_t lo_select);

/** Sets the RF Preamplifier
return: error code
input: enable
*/
SCISTATUS __cdecl mj3_SetRfPreamp(HANDLE dev_handle, uint8_t enable);

/** Sets the RF or IF attenuators
return: error code
input: attenuator 0 RF; 1 IF
 atten_value dBm
*/
SCISTATUS __cdecl mj3_SetAttenuator(HANDLE dev_handle,

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

22 SC5319A & SC5320A Programming Manual

 uint8_t attenuator,
 float atten_value);

/** Sets to bypass conversion, RF to IF port directly
return: error code
input: enable
*/
SCISTATUS __cdecl mj3_SetBypassConversion(HANDLE dev_handle, uint8_t enable);

/** Enable IF path to output port
return: error code
input: enable
*/
SCISTATUS __cdecl mj3_SetIfOutput(HANDLE dev_handle, uint8_t enable);

/** Select the IF filter
return: error code
input: enable
*/
SCISTATUS __cdecl mj3_SetIfFilter(HANDLE dev_handle, uint8_t filter_value);

/** Select the lower or upper conversion sideband
return: error code
input: side_band 0 = upper sideband, 1 = lower sideband
*/
SCISTATUS __cdecl mj3_SetSideband(HANDLE dev_handle, uint8_t side_band);

/** Puts the device circuitry for into power standby mode.
return: error code
input: pwrdown_mode
 0: Take device out off power standby. If the device was in standby,
 the device will be reprogrammed to the previous state. The device
 channel needs about a second to stabilize.
 1: powers down only the LO section
 2: All power to the analog (LO and RF path) will be off
*/
SCISTATUS __cdecl mj3_SetDeviceStandby(HANDLE dev_handle, uint8_t cnvtr_standby, uint8_t
synth_standby);

/** set the reference clock behavior
return: error code
input: lock_eternal: 1 locks the 100 MHz reference to the external 10 MHz source
 pxi10_enable: 1 exports PXI 10 MHz clock, value is ignore in USB devices
 ref dir: 1 force the internal ref out, 0 accepts an external reference
*/
SCISTATUS __cdecl mj3_SetReferenceMode(HANDLE dev_handle, uint8_t ref_dir,
 uint8_t pxi10_enable, uint8_t lock_external);

/** manually adjust the internal reference clock dac to adjust for frequency accuracy
return: error code
input: dac value (max 0x3FFF)
*/
SCISTATUS __cdecl mj3_SetReferenceAdjust(HANDLE dev_handle, uint16_t dac_value);

/** Store the current state of the signal source into EEPROM as the default startup state
return: error code
input: none
*/
SCISTATUS __cdecl mj3_StoreDefaultState(HANDLE dev_handle);

/** Automatically sets up the device to achieve conversion according to autoconv parameters
* and returns the gain
return: error code
input: conv_params struct
output: conversion gain
*/
SCISTATUS __cdecl mj3_SetAutoConversion(HANDLE dev_handle,
 auto_conv_params_t *conv_params, float *conv_gain);

©2022 | SC5319A & SC5320A Programming Manual Rev 1.0

23 Appendix A – mj3_functions.h

/** Self Cal of the VCO dac values of the harmonic loop and sum loop
return: error code
input: cal_vco_select 0 = coarse vco, 1 = sum vco
*/
SCISTATUS __cdecl mj3_SynthSelfCalibrate(HANDLE dev_handle, uint8_t cal_vco_select);

/* Product Export Query (Read) function prototypes */
/*--- */

/* Function retrives the rf parameters such as rf1&2 frequencies and other rf sweep components
return: error code
output: rf_parameters
*/
SCISTATUS __cdecl mj3_FetchRfParameters(HANDLE dev_handle, rf_params_t *rf_params);

/* Function retrives current temperature of the device
return: error code
output: temperature
*/
SCISTATUS __cdecl mj3_FetchTemperature(HANDLE dev_handle, float *temp);

/* Function retrives the device status - PLL locks status, ref clk config, etc see deviceStatus_t type
return: error code
output: device status
*/
SCISTATUS __cdecl mj3_FetchDeviceStatus(HANDLE dev_handle, device_status_t *device_status);

/* Function fetches the device Info
return: error code
output: deviceInfo device information structure
*/
SCISTATUS __cdecl mj3_FetchDeviceInfo(HANDLE dev_handle, device_info_t *device_info);

/* Function fetches the conversion gain of the device with its current setup
return: error code
output: conversion gain
*/
SCISTATUS __cdecl mj3_FetchConvGain(HANDLE dev_handle, float* conver_gain);

/* Function fetches the max gain (preamp off) and the relative gain of the preamp of the device with
its current setup
return: error code
output: max_gain
 preamp_gain
*/
SCISTATUS __cdecl mj3_FetchMaxGain(HANDLE dev_handle, float* max_gain, float* preamp_gain);

/* Function fetches the device calibration data stored in memory
return: error code
output: pointer to calibration data
*/
SCISTATUS __cdecl mj3_FetchCalData(HANDLE dev_handle, cal_data_t **cal_data);

ifdef __cplusplus
}
endif

endif /* MOCKINGJAY3_FUNCTIONS_H__ */

Rev 1.0 | SC5319A & SC5320A Programming Manual SignalCore, Inc.

24 SC5319A & SC5320A Programming Manual

Revision Table

Revision Revision Date Description

0.1 06/22/2020 Document Created

0.2 04/12/2021 First Preliminary version

0.3 011/12/2021 Edited for API changes

1.0 04/14/2022 Edited for release

