

SC5306B
1 MHz to 3.9 GHz RF Downconverter
Core Module with USB and RS232/SPI

Operating & Programming Manual

© 2015-2019 SignalCore, Inc.
 support@signalcore.com

SC5306B Operating & Programming Manual Rev 1.2 i

C O N T E N T S

Important Information 1

Warranty 1

Copyright & Trademarks 2

International Materials Declarations 2

CE European Union EMC & Safety Compliance Declaration 2

Recycling Information 3

Warnings Regarding Use of SignalCore Products 3

Getting Started 4

Unpacking 4

Verifying the Contents of your Shipment 4

Setting Up and Configuring the SC5306B 4

Signal Connections 5

Communication and Supply Connection 6

Mini-USB Connection 7

Reset Button (Pin Hole) 7

Indicator LEDs 7

SC5306B - Theory of Operation 8

Overview 8

Signal Path Description 9

Local Oscillator Description 12

Frequency Tuning Modes 13

Setting the SC5306B to Achieve Best Dynamic Range 14

Operating the SC5306B Outside Normal Range 15

SC5306B Programming Interface 16

Device Drivers 16

The SC5306B USB Configuration 16

Writing the Device Registers Directly 17

Reading the Device Registers Directly 17

Using the Application Programming Interface (API) 17

SC5306B Operating & Programming Manual Rev 1.2 ii

Setting the SC5306B - Writing USB Configuration Registers Directly 18

Configuration Registers 18

Tuning the RF Frequency 18

Changing the Attenuator Settings 19

Enabling and Disabling the RF Preamplifier 19

Changing the RF Synthesizer Mode 19

Selecting the IF Filter Path 19

Setting the Reference Clock Behavior 19

Adjusting the Reference Clock Accuracy 20

Setting Spectral Inversion in the IF 20

Storing Data into the User EEPROM Space 20

Setting the Phase of the IF Signal 20

Querying the SC5306B - Writing USB Request Registers Directly 21

Reading Device Status Data 21

Reading Temperature Data 22

Reading Calibration EEPROM Data 23

Reading User EEPROM Data 23

Working With Calibration Data 24

EEPROM Data Content 25

Frequency Correction 27

Gain Correction 27

IF Response Correction 29

Software API Library Functions 31

Constants Definitions 32

Type Definitions 33

Programming the USB interface 35

Programming the RS232 interface 1

Function Definitions and Usage of the RS232 API 1

Addressing the RS232 Registers Directly 1

Writing to the device via RS232 2

SC5306B Operating & Programming Manual Rev 1.2 iii

Reading from the device via RS232 2

Programming the SC5306A Serial Peripheral Interface 3

The SPI Communication Connector 3

The SC5306A SPI Architecture 3

SPI Clock Rates and Modes 4

Writing Configuration Data via the SPI Bus 7

Reading Requested Data via the SPI Bus 8

Calibration & Maintenance 10

Revision Notes. 11

SC5306B Operating & Programming Manual Rev 1.0 1

The warranty terms and conditions for all SignalCore products are also provided on our corporate

website. Please visit http://www.signalcore.com for more information.

I M P O R T A N T I N F O R M A T I O N

Warranty

This product is warranted against defects in materials and workmanship for a period of one year from

the date of shipment. SignalCore will, at its option, repair or replace equipment that proves to be

defective during the warranty period. This warranty includes parts and labor.

Before any equipment will be accepted for warranty repair or replacement, a Return Material

Authorization (RMA) number must be obtained from a SignalCore customer service representative and

clearly marked on the outside of the return package. SignalCore will pay all shipping costs relating to

warranty repair or replacement.

SignalCore strives to make the information in this document as accurate as possible. The document has

been carefully reviewed for technical and typographic accuracy. In the event that technical or

typographical errors exist, SignalCore reserves the right to make changes to subsequent editions of this

document without prior notice to possessors of this edition. Please contact SignalCore if errors are

suspected. In no event shall SignalCore be liable for any damages arising out of or related to this

document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, SIGNALCORE, INCORPORATED MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR

NEGLIGENCE ON THE PART OF SIGNALCORE, INCORPORATED SHALL BE LIMITED TO THE AMOUNT

THERETOFORE PAID BY THE CUSTOMER. SIGNALCORE, INCORPORATED WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the

liability of SignalCore, Incorporated will apply regardless of the form of action, whether in contract or

tort, including negligence. Any action against SignalCore, Incorporated must be brought within one year

after the cause of action accrues. SignalCore, Incorporated shall not be liable for any delay in

performance due to causes beyond its reasonable control. The warranty provided herein does not cover

damages, defects, malfunctions, or service failures caused by owner’s failure to follow SignalCore,

Incorporated’s installation, operation, or maintenance instructions; owner’s modification of the product;

owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of

third parties, or other events outside reasonable control.

http://www.signalcore.com/

SC5306B Operating & Programming Manual Rev 1.0 2

Copyright & Trademarks

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic

or mechanical, including photocopying, recording, storing in an information retrieval system, or

translating, in whole or in part, without the prior written consent of SignalCore, Incorporated.

SignalCore, Incorporated respects the intellectual property rights of others, and we ask those who use

our products to do the same. Our products are protected by copyright and other intellectual property

laws. Use of SignalCore products is restricted to applications that do not infringe on the intellectual

property rights of others.

 “SignalCore”, “signalcore.com”, and the phrase “preserving signal integrity” are registered trademarks

of SignalCore, Incorporated. Other product and company names mentioned herein are trademarks or

trade names of their respective companies.

International Materials Declarations

SignalCore, Incorporated uses a fully RoHS compliant manufacturing process for our products.

Therefore, SignalCore hereby declares that its products do not contain restricted materials as defined by

European Union directive 2002/95/EC (EU RoHS) in any amounts higher than limits stated in the

directive. This statement is based on the assumption of reliable information and data provided by our

component suppliers and may not have been independently verified through other means. For products

sold into China, we also comply with the “Administrative Measure on the Control of Pollution Caused by

Electronic Information Products” (China RoHS). In the current stage of this legislation, the content of six

hazardous materials must be explicitly declared. Each of those materials, and the categorical amount

present in our products, are shown below:

組成名稱

Model Name

鉛

Lead

(Pb)

汞

Mercury

(Hg)

镉

Cadmium

(Cd)

六价铬

Hexavalent

Chromium

(Cr(VI))

多溴联苯

Polybrominated

biphenyls

(PBB)

多溴二苯醚

Polybrominated

diphenyl ethers

(PBDE)

SC5306B

USB/RS-232/SPI
✓ ✓ ✓ ✓ ✓ ✓

A ✓ indicates that the hazardous substance contained in all of the homogeneous materials for this

product is below the limit requirement in SJ/T11363-2006. An X indicates that the particular hazardous

substance contained in at least one of the homogeneous materials used for this product is above the

limit requirement in SJ/T11363-2006.

CE European Union EMC & Safety Compliance Declaration

The European Conformity (CE) marking is affixed to products with input of 50 - 1,000 VAC or 75 - 1,500

VDC and/or for products which may cause or be affected by electromagnetic disturbance. The CE

marking symbolizes conformity of the product with the applicable requirements. CE compliance is a

manufacturer’s self-declaration allowing products to circulate freely within the European Union (EU).

SignalCore products meet the essential requirements of Directives 2004/108/EC (EMC) and 2006/95/EC

SC5306B Operating & Programming Manual Rev 1.0 3

(product safety), and comply with the relevant standards. Standards for Measurement, Control and

Laboratory Equipment include EN 61326 and EN 55011 for EMC, and EN 61010-1 for product safety.

Recycling Information

All products sold by SignalCore eventually reach the end of their useful life. SignalCore complies with EU

directive 2002/96/EC regarding Waste Electrical and Electronic Equipment (WEEE).

Warnings Regarding Use of SignalCore Products

(1)
PRODUCTS FOR SALE BY SIGNALCORE, INCORPORATED ARE NOT DESIGNED WITH COMPONENTS NOR TESTED FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT
SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2)

IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE
FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS,
COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN
APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF
ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE),
UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS
THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A
RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE SOLELY RELIANT
UPON ANY ONE COMPONENT DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR
APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT
LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM
SIGNALCORE' TESTING PLATFORMS, AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE SIGNALCORE PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY SIGNALCORE, THE USER OR
APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF SIGNALCORE PRODUCTS
WHENEVER SIGNALCORE PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE
APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

SC5306B Operating & Programming Manual Rev 1.0 4

• Ground yourself using a grounding strap or by touching a grounded metal object.

• Touch the antistatic bag to a grounded metal object before removing the hardware

from its packaging.

• Never touch exposed signal pins. Due to the inherent performance degradation

caused by ESD protection circuits in the RF path, the device has minimal ESD

protection against direct injection of ESD into the RF signal pins.

• When not in use, store all SignalCore products in their original antistatic bags.

G E T T I N G S T A R T E D

Unpacking

All SignalCore products ship in antistatic packaging (bags) to prevent damage from electrostatic

discharge (ESD). Under certain conditions, an ESD event can instantly and permanently damage several

of the components found in SignalCore products. Therefore, to avoid damage when handling any

SignalCore hardware, you must take the following precautions:

Remove the product from its packaging and inspect it for loose components or any signs of damage.

Notify SignalCore immediately if the product appears damaged in any way.

Verifying the Contents of your Shipment

Verify that your SC5306B kit contains the following items:

Quantity Item

1 SC5306B USB/RS-232 RF Downconverter

1 USB flash drive with installation software

Setting Up and Configuring the SC5306B

Figure 1. Front view of the SC5306B showing I/O connection locations.

!

SC5306B Operating & Programming Manual Rev 1.0 5

The SC5306B is a core module-based RF downconverter with all user I/O located on the front face of the

module as shown in Figure 1. Each location is discussed in further detail below.

Signal Connections

All signal connections (ports) to the SC5306B are SMA-type. Exercise caution when fastening cables to

the SMA connections. Over-tightening any connection can cause permanent damage to the device.

The condition of your system‘s signal connections can significantly affect measurement

accuracy and repeatability. Improperly mated connections or dirty, damaged or worn

connectors can degrade measurement performance. Clean out any loose, dry debris from

connectors with clean, low-pressure air (available in spray cans from office supply stores).

If deeper cleaning is necessary, use lint-free swabs and isopropyl alcohol to gently clean

inside the connector barrel and the external threads. Do not mate connectors until the

alcohol has completely evaporated. Excess liquid alcohol trapped inside the connector may

take several days to fully evaporate and may degrade measurement performance until fully

evaporated.

 Tighten all SMA connections with 3 in-lb min to 5 in-lb max (56 N-cm max)

RF IN This port accepts input signals from 1 MHz to 3.9 GHz to the downconverter. The nominal

input impedance is 50 Ω. Maximum input power is +27 dBm.

IF OUT This port outputs the 70 MHz IF signal from the downconverter. The nominal output

impedance is 50 Ω.

REF IN This port accepts an external 10 MHz reference signal, allowing an external source to

synchronize the internal reference clock. This port is AC-coupled with a nominal input

impedance of 50 Ω. Maximum input power is +13 dBm.

REF OUT This port outputs the internal 10 MHz or 100 MHz reference clock. If the internal reference

clock is synchronized to an external reference clock through the 10 MHz “ref in” port, this

output port will also be synchronized. This port is AC-coupled with a nominal output

impedance of 50 Ω.

!

!

SC5306B Operating & Programming Manual Rev 1.0 6

Communication and Supply Connection

Figure 2 Power and I/O connector

Power and communication and to the device is provided through a Molex Milli-GridM 2.00mm pitch, 30

position, male header connector, whose part number is 87833-3020. A suggested receptacle female

connector is the crimp terminal type 51110-3051 or ribbon type 87568-3093 from Molex. The pin

definitions of this I/O connector are listed below.

Communication IO connector pin definitions

PIN # 21 Device Active

1,3 12V Supply rail 22 Device Status

2,4,10,16,
20,24,28

GND 23 Baudrate/Spi Mode

5,6,7,8,9,
15,18,21

Reserved, do not connect 25
CTS/CS. This pin is CTS for RS232 or
device select for SPI

11 USB+ 26 SPI Clock

13 USB- 27
TX/MISO. This pin is TX for RS232 or
MISO for SPI

14 USB_VBUS 29
RX/MOSI. This pin is RX for RS232 or
MOSI for SPI

17 Reserved, pull high to 3.3V or DNC 30
RTS/SRDY. This pin is RTS for RS232 or
serial ready for SPI

19 Reset, logic 0 to reset device

SC5306B Operating & Programming Manual Rev 1.0 7

Mini-USB Connection

The SC5306B uses a mini-USB Type B connector for USB communication with the device using the

standard USB 2.0 protocol (full speed) found on most host computers. The pinout of this connector,

viewed from the board edge, is shown in the table above.

Reset Button (Pin Hole)

Behind this pin hole is the reset button. Using a pin and lightly depressing this momentary-action push

button switch will cause a hard reset to the device, putting it back to its default settings. All user settings

will be lost. System reset capability can also be accessed through the communication header connector.

Indicator LEDs

The SC5306B provides visual indication of important modes. There are two redundant pairs of LED

indicators on the device, two to the left of the micro-D connector and two on the opposite side of the

module. The LED closest to the micro-D connector indicates STATUS. The LED to the left of the STATUS

LED indicates ACTIVE. The pair of LEDs on the opposite side of the module are oriented the same way.

Their behavior under different operating conditions is shown in the table below.

Pin
USB

Function
Description

1 VBUS Vcc (+5 Volts)

2 D - Serial data

3 D + Serial data

4 ID Not used

5 GND
Device ground (also tied to

connector shell)

LED Color Definition

STATUS Green “Power good” and all oscillators phase-locked

STATUS Red One or more oscillators off lock

STATUS Off Power fault

ACTIVE Green/Off Device is open (green) /closed (off) , this indicator is also user

programmable (see register map)
ACTIVE Orange User initiated standby mode

SC5306B Operating & Programming Manual Rev 1.0 8

S C 5 3 0 6 B - T H E O R Y O F O P E R A T I O N

Overview

The SC5306B operates on the principle of heterodyning, a process whereby an incoming RF signal is

mixed with specific oscillator frequencies in stages, producing both sum and difference frequency

products. At each stage the summed frequency product (or image) is removed through low-pass

filtering, allowing the difference frequency product to continue through the signal path. Repeating this

process several times using carefully selected local oscillators (LOs) and well-designed band-pass

filtering, the original signal is translated, or “down-converted” in frequency low enough for inexpensive

digitizers to acquire the signal with reasonable bandwidth. The resultant output signal of a heterodyne

downconverter is known as the intermediate frequency (IF). Using a tunable LO as the first mixing

oscillator allows the downconverter to translate a broad range of frequencies to a common IF output.

When combined, a tunable LO and extraction of the lower mixed frequency product creates an

important and useful variant of the heterodyne process known as superheterodyning.

The SC5306B is a three-stage superheterodyne downconverter that delivers superior image rejection

over single stage conversion and offers both high signal-to-noise dynamic range and high spurious-free

dynamic range. The RF input ranges from 1 MHz to 3.9 GHz, and the IF output is fixed at 70 MHz. When

the input frequency is lower than the intermediate frequency, the device technically behaves as an

upconverter. The SC5306B up-converts when the input frequency ranges from 1 MHz to 70 MHz. The

converted spectrum polarity may be inverted or non-inverted by programming the device accordingly.

Fundamentally, each conversion stage consists of a frequency mixer that mixes two input signals and

producing a wanted third. The wanted third component is selected, via a frequency filter, among other

signals generated in the mixing process. The three primary components of the signals in each conversion

mixer are commonly known as the local oscillator (LO), radio frequency (RF), and the intermediate

frequency (IF) as shown in Figure 3.

Figure 3. Frequency conversion stage using a mixer.

Where R represents the RF component, L represents the LO component, and I represents the IF

component. The LO is resident in the downconverter and is either frequency tunable or fixed in

frequency depending on the stage.

The first IF stage is an up-conversion stage - all input signals are converted to an IF higher than the

highest input frequency specified. The second and third stages successively convert this high first IF

down to the final IF of 70 MHz. Having a high first IF allows the downconverter to achieve very high

image rejection ability. This image-free architecture achieves high image rejection without the need for

sharp cut-off pre-select band-pass filters. Having high image rejection makes the SC5306B suitable for

L
R IRF

LO

IF

SC5306B Operating & Programming Manual Rev 1.0 9

applications such as spectral monitoring, broadband spectral analysis, and others where the spectral

environment cannot be controlled.

The SC5306B exhibits very low phase noise of -107 dBc/Hz at 10 kHz offset on a 1 GHz RF carrier with a

typical noise floor of -150 dBm/Hz. The noise floor can be further reduced below -165 dBm/Hz by

enabling the internal preamplifier. With gain control between -60 dB to +50 dB, a measurement signal-

to-noise dynamic range greater than 180 dB is achievable. Using high reverse isolation devices and sharp

cutoff filters, LO leakages and other spurious contents at the input connectors are well below -120 dBm.

Inter-stage LO leakages are also kept very low through sophisticated circuit and shielding design to

ensure that spurious in-band signals remain less than -80 dBc. The excellent spurious free dynamic range

is achieved using low noise linear amplifiers, low loss mixers, and high performance solid state

attenuators. State-of-the-art solid state attenuators have improved linearity over earlier designs. Their

attenuation level changes settle under a microsecond, and for applications that involve frequent range

changing, they offer a vastly superior lifetime over mechanical attenuators.

The real-time bandwidth is shaped primarily by the final 70 MHz IF surface acoustic wave (SAW) filter.

The final IF filter has two programmatically selectable paths, switching either between two filter paths

with different bandwidths or between one filter and one bypass (no filter) path. Filters in the first and

second IF stages are not as selective as the final IF filter but they ensure good isolation between local

oscillators (LO). Keeping each LO isolated helps to suppress unwanted spurious signals.

Frequency accuracy is provided by an onboard 10 MHz temperature compensated crystal oscillator

(TCXO) which can be phase-locked to an external reference source if required, and it is recommended to

do so in applications that may require a more stable and accurate base reference.

Signal Path Description

Figure 4 depicts an overall block diagram of the SC5306B. Starting from the upper left, the RF input of

the SC5306B is AC coupled, followed by an elliptic low-pass filter which has a sharp cut-off frequency

slope to ensure the images and unwanted frequencies are well suppressed. Next, a bypass switch

enables or disables the internal preamplifier in the path of the RF signal, directly after the input filter.

The advantage of placing the amplifier before the attenuators is to increase the downconverter

sensitivity when the preamplifier is selected. This switch is programmatically controlled and can be

toggled as required, enabling the preamplifier to boost input signals of very small amplitude. Due to

losses in the attenuators, the noise figure of the system is proportional to their accumulated losses if the

attenuators were placed before the amplifier. The trade-off for better sensitivity is the lack of

attenuation adjustment for larger signals when the amplifier is enabled. The user will need to provide

good judgment when enabling the preamplifier.

SC5306B Operating & Programming Manual Rev 1.0 10

Figure 4. Block diagram of SignalCore 3.9 GHz downconverters.

R

I

L
R

I

L
R

I

L

N
.M

N
R

I

L

1
0

 M
H

Z

T
C

X
O

1
0
0
 M

H
Z

V
C

X
O

R
e
f.

D
e

te
c
to

r

4
0
0

0
 M

H
z

P
L

L

6
0
5

/7
4

5
 M

H
z

P
L

L

4
6
7

5
M

H
z
 t

o

8
5

7
5

M
H

z
 P

L
L

Y
IG

 D
ri

v
e
r

F
in

e
 T

u
n

e

D
D

S

C
o
a

rs
e

 T
u
n
e

P
L

L

D
D

S

D
A

C

R
F

F
ilt

e
r

R
F

P
re

A
m

p

R
F

 A
tt

e
n

0
-3

0
 d

B

4
6

7
5

 M
H

z

F
ilt

e
r

IF
1
_

A
tt
e
n

0
-3

0
 d

B

IF
3

 A
tt

e
n

1

0
-3

0
 d

B
IF

3
 A

tt
e

n
2

0
-3

0
 d

B
6

7
5
 M

H
z

F
ilt

e
r

IF
3

 F
L
 0

E
S

D

R
F

 I
n

1
 M

H
z
 –

3
9

0
0

 M
H

z

IF
 O

u
t

7
0
 M

H
z

R
e

f.
 I

n

1
0

 M
H

z

R
e

f.
 O

u
t

1
0

/1
0

0
 M

H
z

3
.9

 G
H

z
 T

h
re

e
 S

ta
g

e
 D

o
w

n
c
o

n
v
e

rt
e

r

N
o

m
 I

n
p

u
t

le
v
e

l
-2

0
 d

B
m

M
a

x
 I

n
p

u
t

le
v
e

l
2

7
 d

B
m

N
o
m

 o
u

tp
u
t

le
v
e
l
0

 d
B

m

M
a

x
 o

u
t

le
v
e

l
2

0
 d

B
m

IF
3

 F
L

 1

1
0

M
o

d
u

le
 B

M
o

d
u

le
 A

M
C

U

P
o

w
e

r

R
e

g
u

la
ti
o

n

Digital Interface

T
e

m
p

S
e

n
s
o

r

C
a

lib
ra

ti
o

n

E
E

P
R

O
M

P
L

L
,

A
tt
e

n
u

a
to

r,

A
D

C
,

D
A

C
,

o
th

e
r

d
e

v
ic

e
s

S
P

I,
 R

S
-2

3
2

,
U

S
B

P
C

Ie
 B

ri
d

g
e

P
X

Ie

S
w

it
c
h

e
rs

L
in

e
a

r
R

e
g

.

M
o

d
u

le
 C

D
ig

it
a

l
In

te
rf

a
c
e

A
tt

e
n

u
a

to
rs

,
S

w
it
c
h

e
s

SC5306B Operating & Programming Manual Rev 1.0 11

The RF attenuator, with a 0 to 30 dB attenuation range and attenuation steps of 1 dB, is located

between the preamplifier and the first mixer. The RF attenuator is used to set the signal amplitude to a

user-defined level at the mixer when the RF input level is higher than that level. This attenuator is

adjusted to obtain the required distortion levels. Lowering the RF level with the attenuator at the mixer

operates the device in a more linear region. However suppressing the RF level too low before the mixer

reduces the signal-to-noise ratio, so the user must set this level to compromise between noise and

linearity. The RF signal is mixed with the first local oscillator, LO1, and the difference component is

selected as the wanted intermediate frequency (IF).

The first IF stage after the RF mixer, referred to as IF1 in the programming section, is heavily filtered and

carefully amplified to maintain the best compromise between signal dynamic range and linearity. The

filters provide isolation between the first and second stage mixers to reduce in-band inter-modulation

spurious signals from the mixing of high order harmonics of the IF and LO frequencies. The filters in this

stage also suppress the mixer LO leakage. If not filtered, LO leakages can potentially cause saturation in

the preceding stages of the signal path and degrade the linearity performance of the device. There is an

adjustable attenuator following the output of the first mixer, which is used to suppress leakages from

LO1 that appear in-band when the downconverter is tuned to frequencies less than the bandwidth of

the device. For example, if the bandwidth of the system is 20 MHz, LO1 leakage will appear in-band if

the frequency is tuned below 20 MHz. Technically, LO leakages should not appear in-band until the

device is tuned below 10 MHz, but the non-ideality of the filter allows sufficient leakage at higher

frequencies. Setting this attenuator will attenuate both the IF1 signal and the LO1 leakage, making the

device respond more linearly. As always, the compromise is that the SNR will degrade. The LO1 leakage

signal will appear as DC when the IF is digitized and converted to baseband. By design, setting the IF

frequency at 4675 MHz allows sufficient frequency separation from the highest RF frequency so that the

IF1 filter, despite its non ideal roll-off response, can suppress the RF signal by more than -100 dB.

The first IF is then down-converted to the second IF of 675 MHz by mixing with the second LO (LO2).

Similarly, as with the first IF section, the second IF (IF2) section is also well filtered and amplified.

Keeping isolation between the second and third mixers is important to ensure spurious signals

generated within the device are kept significantly low when compared to the primary signal of interest.

Finally, the second IF is converted to the third and final IF by mixing with the third LO (LO3). Located in

this stage are the primary band-pass filters that define the bandwidth of the device. The final IF filters

are selectable between two filters of different bandwidths centered at 70 MHz. The standard

bandwidths for these filters are 5 MHz, 10 MHz, 20 MHz, and 40 MHz. These surface acoustic wave

(SAW) filters provide excellent filter response. The user may choose to use one of these two filter paths

as a bypass, that is, no band-pass filter in the path. One reason for bypassing the final IF filter is to

improve the group delay through the device; with the filters enabled the delay is approximately 1 s.

Bypassing the filter reduces the delay to about 100 ns, which may be preferred in some applications.

Following the band-pass filter are the IF attenuators, IF3_Atten1 and IF3_Atten2. These IF attenuators

control the IF gain of the device and set the desired output IF level at the IF output port. The

recommended output level is 0 dBm. However, the level may be set to other values that suit the

particular application. Finally, a low pass filter suppresses the harmonics of the IF signal. It is important

that the IF harmonics are kept as low as possible because they appear in-band as higher order images

SC5306B Operating & Programming Manual Rev 1.0 12

when digitized. The harmonics are typically below 90 dBc at the IF. In applications where this may not be

acceptable, external analog filtering is recommended.

Local Oscillator Description

The signal path circuit is separate from the local oscillator generation circuits to maximize isolation

between the RF/IF signals and the local oscillators, except for the LO injection paths into the mixers.

Although the both circuits reside within the same module, well-designed shielding and circuit layouts

ensures leakages between them are keep to a minimum.

The first local oscillator, LO1, is an agile, tunable phase-lock synthesizer. The synthesizer tunes from

4675 MHz to 8575 MHz, a tuning range of 3900 MHz. The minimum step size is 1 Hz, and is

accomplished through a multiple phase-locked loop and DDS hybrid architecture. The use of a hybrid

tuning architecture is important for improved phase noise and improved close-in phase spurious

responses. Operating LO1 at such high frequencies internally to obtain a 1 MHz to 3.9 GHz RF range

requires that the phase noise at these frequencies is sufficiently low so that the converted RF signal

phase noise is not degraded significantly. For example, to downconvert a 100 MHz RF signal, LO1 is

tuned to 4775 MHz, which is about 48 times higher in frequency than the input frequency. To further

ensure phase noise remains low farther away from the carrier, especially at 100 kHz and 1 MHz offsets,

a YIG oscillator is used. It important to realize that having a phase noise “plateau” out to several tens of

MHz, which is a very common phenomenon with VCO-based synthesizers, is not acceptable for many

applications.

Another reason for a hybrid tuning architecture is to reduce the phase spurs associated with phase-

locked loops. A simple fractional PLL may provide resolution to 1 Hz, but it cannot provide 1 Hz

frequency tuning steps with low fractional phase spurs. By using two DDS circuits to provide the 1 Hz

tuning steps and mathematically ensuring that DDS-generated spurs are suppressed within the

architecture, LO1 is made to fine tune to exact frequencies, that is, the frequency synthesized is an exact

integer multiple or division of the reference signal.

The second local oscillator, LO2, is fixed at 4.0 GHz, synthesized using an integer PLL and a fixed narrow

tune VCO with very low phase noise. The typical raw phase noise of the second stage oscillator is less

than -150 dBc/Hz @ 1 MHz offset. LO2 phase noise contribution to the overall phase noise of the device

is less than 1 dB. LO1 dominates the phase noise of the device.

The third local oscillator, LO3, is synthesized using a fractional PLL and has phase noise lower than both

LO1 and LO2, and is switchable between two frequencies: 605 MHz and 745 MHz, the later frequency

being the default. Both of these frequencies will set the output IF center frequency at 70 MHz. However,

at the default LO3 frequency the final 70 MHz IF output spectral polarity is the same as that of the input

RF, whereas the 605 MHz frequency will create an inverted IF spectrum. If LO3 is set to 605 MHz by

calling the sc5306B_SetIfInversion function or register, the IF output spectral content will be inverted

with respect to the input RF spectrum. See Figure 5 for a graphical representation of this process.

SC5306B Operating & Programming Manual Rev 1.0 13

Figure 5. Graphical representation of IF inversion.

Inverted spectral conversion is convenient for digitizers that sample the IF in the even Nyquist zones

because it eliminates the need to perform digital inversion of the acquired spectrum.

All local oscillators are phase-locked to an internal 100 MHz voltage controlled crystal oscillator (VCXO),

which sets their close-in phase noise performance. The 100 MHz VCXO is in turn phase-locked to the

internal 10 MHz TCXO for frequency accuracy and stability. For better frequency accuracy and stability

than the TCXO onboard the SC5306B or for frequency synchronization, the user can programmatically

set the device to phase-lock the TCXO to an external 10 MHz reference source by programming the

REFERENCE_SETTING register. It is important to note that the TCXO will only attempt to lock to an

external source if one is detected. A typical external reference source minimum level of -10 dBm is

required for detection to be successful. A reference source level of 0 dBm to +3 dBm is recommended

for normal operation. The reference source is fed into the device through the “ref in” port. The device

can also export a copy of its internal reference through the “ref out” port. The output reference

frequency is selectable for either 10 MHz or 100 MHz output. By default, routing of the reference signal

to the “ref out” port is disabled. It can be enabled by programming the REFERENCE_SETTING register.

This reference frequency is sourced from the internal 100 MHz OCXO, and the default output selection is

10 MHz, which is divided down from the 100 MHz VCXO. The output reference level is typically +3 dBm.

Frequency Tuning Modes

Tuning of SC5306B superheterodyne downconverter is accomplished through the tuning of LO1. LO1 has

two sets of control parameters that can be explored to optimize the device for any particular

application. The first set of parameters, TUNE SPEED, set the tuning and phase lock time as the

frequency is changed. TUNE SPEED consists of two modes - Fast Tune mode and the Normal mode; both

of these modes directly affect the way the YIG oscillator is configured. The Fast Tune mode deactivates a

noise suppression capacitor across the tuning coil of the YIG oscillator, and doing so increases the rate of

current flow through the coil, correspondingly increasing the rate of frequency change. In Normal mode

the capacitor is activated, slowing down the rate of frequency change. The advantage of activating the

capacitor is that it shunts the noise developed across the coil, decreasing close-in phase noise. Refer to

Appendix A for specifications regarding tuning speed.

RF

A

fc

IF

A

ifc

IF

A

ifc

Non Inverted Conversion

Inverted Conversion

SC5306B Operating & Programming Manual Rev 1.0 14

The other set of control parameters, FINE TUNE, sets the tuning resolution of the device. There are three

modes: 1 MHz, 25 kHz, and 1 Hz tuning step sizes. The first two modes use only fractional phase

detectors to tune the frequency of the LO1 synthesizer, while the third mode enables the DDS to

provide 1 Hz resolution. The PLL-only modes (1 MHz and 25 kHz) provide the ability to realize exact

frequencies with tuning as fine as 25 kHz. Use of these modes offers several advantages - lower phase

spurs and less computational burden to set a new frequency. These modes have the lowest phase

spurious signals, below the levels published in the product specification. The DDS mode also tunes to

exact frequencies, however it requires many more computing cycles and additional register-level writes

in order to set a new frequency. Comparing times, the device requires up to 175 microseconds to

compute and change to a new frequency in PLL only modes, but requires up to 350 microseconds in the

DDS tuning mode. At first glance it may seem that these differences would directly impact frequency

tuning times. However, tuning times are predominantly set by the physical parameters of the YIG

oscillator. Computation and register writes typically account for less than 25% of the total tune time of a

10 MHz step change in frequency.

It is important to note that although the synthesized frequencies are exact frequencies, there are

observable random phase drifts in the downconverted signals. These drifts are due to PLL non-idealities

rather than a frequency error in the DDS tuning circuit. Having exact frequency synthesis is important for

many applications. Published phase noise and spurs specifications are based on the 1 Hz (DDS) mode.

Setting the SC5306B to Achieve Best Dynamic Range

When discussing dynamic range, there are two distinct quantities which are specified. First is the

compression-to-noise density (per Hz) dynamic range, commonly referred to in SignalCore literature as

the signal-to-noise ratio dynamic range (SNRDR). Second is the third order spurious free dynamic range,

commonly known as the SFDR. In traditional radio terminology, the SFDR strictly refers to the third order

effects of nonlinearity whose products are generally close to the carrier signal and are very difficult to

filter out. In analog to digital conversion, the SFDR term takes on a different definition, referring to the

ratio of the input signal strength to all the spurious products appearing within the Nyquist band. These

later spurious signals may be caused by harmonics, inter-modulation, and digital quantization.

These two dynamic ranges are instantaneous, in that the signal and the noise or spurs are observed at

the same time. On the other hand, the measurement dynamic range, specifically referring to SNRDR, is

not instantaneous. The user may enable RF attenuation to receive signals levels much greater than the

instantaneous compression point, or enable the preamplifier to detect signals below the instantaneous

noise density level. The measurement dynamic range is thus much greater than the instantaneous

equivalent.

The SC5306B is designed with a focus on having a high dynamic range, not just low in noise or having

high compression points. It is designed as a receiver for signal analyzers, which require that it handle

larger signals well. For weak signals, the RF preamplifier should be enabled. The design ensures the SFDR

dynamic range specification is met when the RF signal level at the input mixer is -20 dBm and the IF level

is at 0 dBm. This requires a total IF attenuation of 10 dB for a typical device gain of 30 dB (preamplifier

disabled). This setting is typical for broadband signals with more than a few MHz of real-time

bandwidth.

SC5306B Operating & Programming Manual Rev 1.0 15

For applications where the SNR must be maximized, such as examining the close-in characteristics of a

sine tone, the input mixer should be set to accept 0 dBm power and the IF set at 0 dBm or higher. This is

a likely setting for making phase noise measurements of an RF signal (assuming the specified phase

noise of the SC5306B is low enough for measuring that particular signal). It is important to first set the

necessary attenuators before injecting a 0 dBm level signal to the mixer, otherwise heavy saturation of

the mixer or the output amplifiers may cause degradation or even possible failure of the receiver over

time.

The SC5306B is designed for a nominal output IF level of 0 dBm, ensuring the IF signal is about 3-4 dB

below the full-scale value of many 50 analog-to-digital data converters (ADCs). Depending on the

application, the user will need to set the appropriate gain of the device (via attenuation), and hence the

output level, to suit the particular application. For broadband signals, it is recommended that the IF

output level be about 7 dB below the full-scale value of a digitizer because of possible high crest factors

that may saturate the digitizer. For sine-tone or narrowband application, the output IF level should be

about 3 dB below full-scale of the digitizer to maximize its signal-to-noise dynamic range.

SignalCore provides a simulation tool that mimics the behavior of the SC5305A. The user may run the

simulator to get an understanding of what the parameters need to be set on the downconverter to

achieve certain performance. Additionally, the function sc5305a_CalcAutoAttenuation helps the user

obtain the necessary attenuator parameters to setup the device for the best compromise of linearity

and noise performance for a given set of input and output parameters.

There is a programmable attenuator in the first IF section, IF1_Atten, that can be used to improve

linearity in general. The primary use of this attenuator is to suppress the LO1 leakage in the IF band

when the downconverter is tuned below the bandwidth frequency. This in-band leakage affects the

linearity of the device as it may inter-modulate with the IF signal to produce third order spurious

products. The level of the leakage is equivalent to a typical -25 dBm RF signal at the mixer. The user

should set 5 dB to 10 dB of attenuation when operating at these low frequencies.

Operating the SC5306B Outside Normal Range

The SC5306B is capable of tuning below 1 MHz and above 3.9 GHz. These frequencies however, lie

outside of the specification range and performance will be degraded if operated in these outer margins.

For some applications, the reduced dynamic range or elevated spurious levels in these ranges may not

pose an application concern. The lowest tunable frequency is 0 MHz (DC). However, for input

frequencies below 1 MHz, the AC coupling capacitors in the circuit limit/attenuate the signal

significantly. On the upper end of the spectrum, the input low-pass filter will attenuate the signal rapidly

as the frequency increases above 3.9 GHz. Calibration stored on the device EEPROM does not account

for these out-of-range frequencies, so applying any correction using the stored calibration is not valid.

SC5306B Operating & Programming Manual Rev 1.0 16

S C 5 3 0 6 B P R O G R A M M I N G I N T E R F A C E

Device Drivers

The SC5306B is programmatically controlled by writing to its set of configuration registers, and its status

read back through its set of query registers. The user may choose to program directly at the register

level or through the API library functions provided. These API library functions are wrapper functions of

the registers that simplify the task of configuring the register bytes. The register specifics are covered in

the next section. Writing to and reading from the device at the register level involves calls to the

sc5306B_RegWrite and sc5306B_RegRead functions respectively. These functions are accessible in the

API library.

For USB communication, there are many USB drivers available that can be used to directly access the

registers of the device - WinUSB, libusb-1.0, libusb-win32, and NI-VISA are a few examples. The SC5306B

API is based on the libusb-1.0 driver and is provided as a Microsoft Windows dynamic linked library

(sc5306B.dll) or Linux shared library (libsc5306B.so). For more information on the libusb driver, visit

www.libusb.org. For the Windows platform, libusb-1.0 relies on WinUSB at the kernel level. For libusb-

1.0 to function properly on Windows platforms, WinUSB must be installed on the host.

For LabVIEW support on Windows operating systems, SignalCore provides two types of APIs - an API

consisting of simple wrapper VIs that make calls to the libusb-based sc5306B.dll, and a separate API with

all device functions written as native G-code VIs based on NI-VISA.

For other operating systems or embedded systems, users will need to access the registers through their

own proprietary USB driver or through one of the drivers mentioned above. Should the user require

additional assistance in writing an appropriate API other than that provided in the software installation,

please contact SignalCore.

The SC5306B USB Configuration

The SC5306B USB interface is USB 2.0 compliant running at Full Speed, capable of 12 Mbits per second.

The interface supports 3 transfer or endpoint types:

• Control Transfer

• Interrupt Transfer

• Bulk Transfer

The endpoint addresses are provided in the C-language header file and are listed below.

http://www.libusb.org/

SC5306B Operating & Programming Manual Rev 1.0 17

The buffer lengths are sixty-four bytes for all endpoint types. The user should not exceed this length or

the device may not respond correctly. Furthermore, all registers require five bytes or less with the

exception of registers 0x24 (GET_CAL_EEPROM_BULK) and 0x25 (GET_USER_EEPROM_BULK). These two

registers return sixty-four bytes of valid data upon executing a device read.

Writing the Device Registers Directly

Device commands for the SC5306B vary between two bytes and five bytes in length. The most significant

byte (MSB) is the command register address that specifies how the device should handle the subsequent

configuration data. The configuration data likewise needs to be ordered MSB first, that is, transmitted

first. For configuration commands, an output buffer of five bytes long is sufficient. To ensure that a

configuration command has been fully executed by the device, reading a few bytes back from the device

will confirm a proper command write because the device will only return data upon full execution of a

command. A map of the configuration registers for the SC5306B is provided in Table 4. Details for

writing the registers are provided in the next section.

Reading the Device Registers Directly

Valid data is only available to be read back after writing one of the query registers. With the exception

of registers 0x24 (GET_CAL_EEPROM_BULK) and 0x25 (GET_USER_EEPROM_BULK), where sixty-four

bytes of valid data are returned, only the first two bytes of the device IN endpoints contain valid data.

When querying the device, the MSB is returned as the first byte. A map of the query registers for the

SC5306B is provided in Table 2. Details for reading the registers are provided in the next section.

Using the Application Programming Interface (API)

The SC5306B API library functions make it easy for the user to communicate with the device. Using the

API removes the need to understand register-level details - their configuration, address, data format,

etc. Furthermore, the user does not need to understand the different transfer types of the USB

interface. For example, to obtain the device temperature the user simply calls the function

sc5306B_GetTemperature, or calls sc5306B_SetFrequency to set the device frequency. The software

API is covered in detail in the “Software API Library Functions” section.

// Define SignalCore USB Endpoints
define SCI_ENDPOINT_IN_INT 0x81
define SCI_ENDPOINT_OUT_INT 0x02
define SCI_ENDPOINT_IN_BULK 0x83
define SCI_ENDPOINT_OUT_BULK 0x04

// Define for Control Endpoints
define USB_ENDPOINT_IN 0x80
define USB_ENDPOINT_OUT 0x00
define USB_TYPE_VENDOR (0x02 << 5)
define USB_RECIP_INTERFACE 0x01

SC5306B Operating & Programming Manual Rev 1.0 18

S E T T I N G T H E S C 5 3 0 6 B - W R I T I N G U S B

C O N F I G U R A T I O N R E G I S T E R S D I R E C T L Y

Configuration Registers

The users may write the configuration registers (write only) directly by calling the sc5306B_RegWrite

function directly. Table 1 lists the register address (command) and the effective bytes of command data.

Data must be formatted into an unsigned integer of 32 bits prior to passing it to the function. As an

example to write the byte 0xEE into address 0xA8BB of the user EEPROM, the user would call the

sc5306B_RegWrite as follows:

sc5306B_RegWrite(deviceHandle, 0x23, 0x00A8BBEE)

Table 1 Configuration registers

Register (Address)

Data

Bytes Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default

INITIALIZE (0x01) [7:0] Open Open Open Open Open Open Open Mode 0x00

SET_SYSTEM_ACTIVE (0x02) [7:0] Open Open Open Open Open Open Open
Enable

SYS LED
0x00

POWER_SHUT_DOWN (0x05) [7:0] Open Open Open Open Open Open Open Enable 0x00

[7:0] 0x00

[15:8] 0x00

[23:16] 0x00

[31:24] 0x00

[7:0] 0x00

[15:8] 0x00

RF_PREAMPLIFIER_SETTING (0x12) [7:0] Open Open Open Open Open Open Open Enable 0x00

RF_MODE_SETTING (0x13) [7:0] Open Open Open Open Open

Fast

Tune

Enable

0x00

IF_FILTER_SELECT (0x15) [7:0] Open Open Open Open Open Open Open Band 0x00

REFERENCE_SETTING (0x16) [7:0] Open Open Open Open Reserv
100 MHz

Out Sel

Ref Out

Enable

Lock

Enable
0x00

[7:0] 0x00

[15:8] 0x00

IF_INVERT_SETTING (0x1D) [7:0] Open Open Open Open Open Open Open Enable

[7:0]

[15:8]

[23:16]

[7:0] 0x00

[15:8] Open Open 0x00Units Value [13:8]
PHASE_SETTING (0x32)

 EEPROM DATA [7:0]

WRITE_USER_EEPROM (0x23) EEPROM Address [7:0]

EEPROM Address [15:8]

Tenths ValueUnits Value[7:4]

Attenuator Value

Attenuator
ATTENUATOR_SETTING (0x11)

Fine Tune

REFERENCE_DAC (0x17)
DAC word [7:0]

DAC word [15:8]

 Frequency Word [23:16]

Frequency Word [7:0]

Frequency Word [15:8]

Frequency Word [31:24]

RF_FREQUENCY (0x10)

Tuning the RF Frequency

The frequency of the first local oscillator (LO1) is set by writing the RF_FREQUENCY register (0x10). This

register requires four data bytes, these data bytes being the bytes comprising an unsigned 32-bit

integer. The data bytes contain the frequency tuning word in Hertz. For example, to tune to a frequency

of 2.4 GHz, the data word would be d2400000000 in decimal or 0x8F0D1800 in hexadecimal.

SC5306B Operating & Programming Manual Rev 1.0 19

Changing the Attenuator Settings

The ATTENUATOR_SETTING (0x11) register has two data bytes needed to set the value of a specific

attenuator. The MSB sets the target attenuator, and the least significant byte (LSB) contains the

attenuation value. The MSB values and corresponding attenuator locations are as follows:

MSB value Attenuator

0x00 IF3_ATTEN2

0x01 IF3_ATTEN1

0x02 RF_ATTEN

0x03 IF1_ATTEN

The LSB contains the attenuation value in 1 dB steps for the attenuator specified in the MSB. For

example, to set the RF attenuator to 15 dB, the command data would be 0x020F.

Enabling and Disabling the RF Preamplifier

The RF_PREAMPLIFIER_SETTING (0x12) register has one data byte that enables or disables the RF

preamplifier. It is recommended that the preamplifier only be enabled when the RF input signal is less

than or equal to -30 dBm. Enabling the preamplifier increases the receiver sensitivity for low-level

signals. Setting the LSB of the data byte high or low will enable or disable the RF preamplifier,

respectively. For example, to turn on the preamplifier the command data is 0x01.

Changing the RF Synthesizer Mode

The RF_MODE_SETTING (0x13) register has one data byte that provides two tuning modes for the

device: Fast Tune and Fine Tune. By default the Fast Tune mode is disabled (Normal mode). Asserting

high bit 3 of the data byte will enable Fast Tune mode. Fast Tune enables the device to achieve faster

lock and settling times between frequency changes. Please refer to Appendix A for more information

regarding Fast Tune mode. The second mode, Fine Tune mode, has three options: 1 MHz (PLL), 25 kHz

(PLL), and 1 Hz (DDS). Selection of these options requires setting the first two bits of the data byte to 0,

1, and 2 respectively. See the “Frequency Tuning Modes” section for more information. For example, to

set the device for Fast Tune and a 1 Hz tuning step resolution, the command data would be 0x06.

Selecting the IF Filter Path

The IF_FILTER_SELECT (0x15) register has one data byte that selects between two installed IF filters;

IF3_FILTER0 and IF3_FILTER1. Setting bit 0 high will select IF_FILTER1. The exact bandwidths of the filters

depend on the available installed options and are stored in the device calibration EEPROM.

Setting the Reference Clock Behavior

The REFERENCE_SETTING (0x16) register has one data byte which sets the reference clock behavior of

the device. The default state of this register is 0x00, which disables the export of the internal reference

clock, and disables phase locking to an external source. Asserting bit 0 high enables the device to lock to

SC5306B Operating & Programming Manual Rev 1.0 20

an external clock source. However, the device will not attempt to phase lock until it successfully detects

the presence of a clock source at the “ref in” port. Asserting bit 1 low disables export of the internal

clock. Asserting bit 1 high enables the device to export a 10 MHz signal through the “ref out” port.

Asserting high bit 1 and bit 2 exports a 100 MHz signal.

Adjusting the Reference Clock Accuracy

The frequency precision of the SC5305A’s 10 MHz TCXO is set by the device internally. The device writes

the factory calibrated value to the reference DAC on power-up. This value is an unsigned 16-bit number

stored in the EEPROM (see the calibration EEPROM map). The user may choose to write a different value

to the reference DAC by accessing the REFERENCE_DAC (0x17) register. Command data is 16 bits

maximum.

Setting Spectral Inversion in the IF

The default IF spectral polarity is the same as that of the RF input. However, should there be a need to

invert the IF spectrum with respect to the RF spectrum, the register IF_INVERT_SETTING (0x1D) is used

for that purpose. This register contains one data byte. Setting bit 0 high will enable inversion.

Storing Data into the User EEPROM Space

There is an on-board 16k byte EEPROM available to the user to store user data information such as user

calibration, settings, etc. Writing to the user accessible EEPROM space is accomplished through the

register WRITE_USER_EEPROM (0x23). This register has three data bytes: bytes 2 and 1 contain the

address of the EEPROM, and byte 0 is the byte value to be written. NOTE: The user may need to add 1-5

millisecond delay between consecutive writes if data is not written correctly. There is no delay required

in read mode. For example, to write 123 to address 1234 of the user EEPROM the command data would

be 0x04D27B.

Setting the Phase of the IF Signal

When the device is tuned to a fixed RF frequency, some applications may need to change the phase of

the downconverted signal for various reasons. The IF output phase can be programmatically adjusted in

0.1 degree increments from 0 to 360 degrees. Changing the phase is accessed through the register

PHASE_SETTING (0x32), which has two data bytes. The first four bits contain the tenths value, while bits

[13:4] hold the units value. The command data to adjust for a 45.5 degree phase shift in the signal would

be 0x02D5.

SC5306B Operating & Programming Manual Rev 1.0 21

Q U E R Y I N G T H E S C 5 3 0 6 B - W R I T I N G

U S B R E Q U E S T R E G I S T E R S D I R E C T L Y

The request set of registers shown in Table 2 are used to retrieve data from the device. They are

accessed by calling the sc5306B_RegRead function. The parameters this function passes are listed in the

“Software API Library Functions” section, which is repeated here for convenience:

int sc5306B_RegRead(deviceHandle *devHandle, unsigned char commandByte,

 unsigned int instructWord, unsigned int *receivedWord)

Table 2: Query registers.

Register (Address)

Data

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default

GET_DEVICE_STATUS (0x18) [7:0] Open Open Open Open Open Open Open TRUE 0x00

Read Byte 1 [7:0]

Read Byte 0 [15:8]

GET_TEMPERATURE (0x19) [7:0] Open Open Open Open Open Open Open Open 0x00

Read Byte 1

Read Byte 0 Open Open Sign

[7:0] 0x00

[15:8] 0x00

Read Byte 1

Read Byte 0 Open Open Open Open Open Open Open Open

[7:0] 0x00

[15:8] 0x00

Read Byte 1

Read Byte 0 Open Open Open Open Open Open Open Open

User EEPROM byte data

Device status [15:8]

Device status [7:0]

Temp data [7:0]

Temperature data [12:8]

READ_USER_EEPROM (0x22)
EEPROM address [7:0]

EEPROM address [15:8]

READ_CAL_EEPROM (0x20)
EEPROM address [7:0]

EEPROM address [15:8]

Cal EEPROM byte data

Reading Device Status Data

To obtain the device status, write request register GET_DEVICE_STATUS (0x18) with 0x01 for the

instructWord, and data is returned via the receivedWord pointer. The returned data are summarized in

Table 3. It is important to note that the first local oscillator has three phase detectors in the synthesizer,

so all three phase detectors must be ANDed to indicate the proper phase-locked status. The three bits

that indicate the status of the three phase detectors are [13], [10] and [9].

SC5306B Operating & Programming Manual Rev 1.0 22

Table 3. Description of the status data bits.

Bit Description

[15] 10 MHz TCXO PLL lock status

[14] 100 MHz VCXO PLL lock status

[13] LO1 PLL main lock status

[12] LO2 PLL lock status

[11] LO3 PLL lock status

[10] LO1 PLL1 lock status

[9] LO1 PLL2 lock status

[8] Reserved

[7] External reference detected

[6] Reference output enabled

[5] Reference lock enabled

[4] IF3_FILTER1 selected

[3] RF preamplifier enabled

[2] Device standby enabled

[1] Reserved

[0] Reserved

Reading Temperature Data

To obtain temperature data, write request register GET_TEMPERATURE (0x19) with 0x00 for the

instructWord, and temperature data is returned via the receivedWord pointer. Once data is received,

the least two bytes of data need to be processed to correctly represent the data in temperature units of

degrees Celsius. Data is returned in the first 14 bits [13:0]. Bit [13] is the polarity bit indicating whether it

is a positive (0x0) or negative (0x1) value. The temperature value represented in the raw data is

contained in the next 13 bits [12:0]. To obtain the temperature ADC code, the raw data should be

masked (logically ANDed) with 0x1FFF, and the polarity should be masked with 0x2000. The conversion

from 12 bit ADC code to an actual temperature reading in degrees Celsius is shown below:

Positive Temperature = ADC code / 32

Negative Temperature = (ADC code – 8192) / 32

It is not recommended to read the temperature too frequently, especially once the SC5305A has

stabilized in temperature. The temperature sensor is a serial device located inside the RF module.

Therefore, like any other serial device, reading the temperature sensor requires sending serial clock and

data commands from the processor. The process of sending clock pulses on the serial transfer line may

cause unwanted spurs on the RF signal as the serial clock potentially modulates the local oscillators.

Furthermore, once the SC5305A stabilizes in temperature, repeated readings will likely differ by as little

as 0.25 OC over extended periods of time. Given that the gain-to-temperature coefficient is on the order

of 0.06 dB/OC, gain changes between readings will be negligible.

SC5306B Operating & Programming Manual Rev 1.0 23

Reading Calibration EEPROM Data

To read a single byte from an address in the device EEPROM write the READ_CAL_EEPROM register with

the address for the instructWord, and data is returned via receivedWord. The byte data is contained in

the least byte of the 32 bit unsigned integer so data must be typed-casted back to an unsigned character

byte. The EEPROM maximum address is 0x3FFF. Reading above this address will cause the device to

retrieve data starting from the lowest addresses. For example, addressing 0x4000 will return data stored

in address location 0x0000. The calibration EEPROM map is discussed in detail in the “Working With

Calibration Data” section.

All calibration data, whether floats or unsigned 32-bit integers, are stored as flattened unsigned 32-bit

words. Each data point is comprised of four unsigned bytes, so data must be read back in multiples of

four bytes, with the least significant byte stored in the lower address. After the data are read back, they

need to be un-flattened back to their original type. Since the four bytes constitutes the four bytes of an

unsigned 32-bit integer, converting (un-flattening) to an unsigned value simply involves concatenation of

the bytes through bit shifting. To convert to floating point representation is a little more involved. First,

convert the four bytes into an unsigned 32-bit integer value, and then (in C/C++, etc.) type-cast a float

pointer to the address of the value. In C/C++, the code would be float Y = *(float *)&X, where X has been

converted earlier to an unsigned integer.

An example written in C code would look something like the following:

Reading User EEPROM Data

Once data has been written to the user EEPROM, it can be retrieved using the process outlined above

for reading calibration data, but calling the READ_USER_EEPROM registers instead.

byte_value[4]; // read in earlier
unsigned int uint32_value;
float float32_value;

int count = 0;
while (count < 4) {
 uint32_value = unit32_value |
(byte_value[count] << (count*8));
 count++;
}

float32_value = *(float *)&uint32_value;

SC5306B Operating & Programming Manual Rev 1.0 24

W O R K I N G W I T H C A L I B R A T I O N D A T A

The device EEPROM on board has capacity for 16k bytes data. The EEPROM stores both device

information and calibration data, which the user may choose to use to correct for conversion gain. Users

are not required to use the onboard calibration to compensate for the gain errors associated with

temperature, attenuator settings, frequency, pass-band ripple, and filter path selection. Alternatively,

users can perform their own system calibration to remove these errors if the unit is integrated into a

larger system whose external factors affect the gain significantly. Furthermore, the calibration data

provided are raw measured data, and it is in the discretion of the user to decide on the appropriate

methods of applying the calibration. For example, the user may choose to fit the measured data to a

polynomial and use the polynomial coefficients to compute the necessary correction. Alternatively, the

user may choose to perform correction through the use of interpolation. The methods outlined in this

section only serve as guides on how to use the calibration data for correction, and these are the

methods used by SignalCore in deriving published specifications that indicate the use of calibration. The

function sc5306B_CalcGain utilizes the methods outlined here and may be used to compute the device

gain for any particular setting of the device.

Table 4. EEPROM memory map of device attributes and raw calibration data.

Table 4 lists the calibration EEPROM map of the SC5306B, indicating how and where board information

and calibration data are stored. Since there are only 16k bytes on the EEPROM, SignalCore recommends

that all data be read into host memory on initialization of the device and parsed for further

mathematical manipulation. Having it available on host memory at all times during an application will

greatly increase the speed of data manipulation. Another recommendation is to store the data to a file

and have the application read the file rather than the EEPROM to retrieve data on each execution

EEPROM

ADD (HEX)

DATA

POINTS

BYTES TYPE Array matrix DESCRIPTION

0X00 1 4 U32 [1x1] Manufacturing Information

0X04 1 4 U32 [1x1] Product Serial Number

0X08 1 4 U32 [1x1] RF Module Number

0X0C 1 4 U32 [1x1] Product Manufacture Date

0x10 1 4 U32 [1x1] Last Calibration Date

0X2C 1 4 F32 [1x1] Firmware Revision

0x30 1 4 F32 [1x1] LO Hardware Revision

0x34 1 4 F32 [1x1] SC Hardware Revision

0x50 1 4 F32 [1x1] Calibration Temperature

0x54 1 4 U32 [1x1] TCXO DAC Value

0x58 2 8 F32 [1x2] Reserved

0x64 72 288 F32 [3x24] YIG Calibration (Reserved)

0x184 1 4 F32 [1x1] IF Filter 0 Bandwidth

0x188 1 4 F32 [1x1] IF Filter 1 Bandwidth

0x1A0 24 96 F32 [3x8] Temperature Coefficients

0x204 153 612 F32 [3x51] IF3_FILTER0 Response Calibration

0x46C 153 612 F32 [3x51] IF3_FILTER1 Response Calibration

0x788 1 4 F32 [1x1] IF Invert Gain

0x78C 1 4 F32 [1x1] Reserved

0x790 1 4 F32 [1x1] IF3_FILTER1 Gain

0x798 90 360 F32 [3x30] IF Attenuator Calibration

0x9F8 1650 6600 R32 [33x50] RF Calibration

SC5306B Operating & Programming Manual Rev 1.0 25

because of the relative slow EEPROM read rate. The sc5306B_ConvertRawCalData function is helpful to

convert EEPROM data to their original format and types.

EEPROM Data Content

The following list describes the data contents of the EEPROM in detail. All addresses shown are the

starting offset positions in the EEPROM, and are the starting address for block of data.

Manufacturing Information (0x00). This is an unsigned integer value that contains information used by

the factory for production purposes.

Product Serial Number (0x04). This is an unsigned integer value that contains the SC5306B serial

number. It is unique for every product produced. It is used for the purpose of tracking the history of the

product.

RF Module Serial Number (0x08). This is the serial number of the shielded RF metal enclosure containing

the analog and RF circuitry. All calibration data are stored on the EEPROM within the enclosure.

Calibration data are written to this EEPROM at the factory are tracked using the RF module serial

number for the SC5306B.

Product Manufacture Date (0x0C). This is an unsigned integer: byte 3 is the Year, byte 2 is the Month,

byte 1 is the day of the month, and byte 0 is the hour of the day.

Last Calibration Date (0x10). This is an unsigned integer: byte 3 is the Year, byte 2 is the Month, byte 1

is the day of the month, and byte 0 is the hour of the day.

Firmware Revision (0x2C). This is a float 32 value containing the firmware revision.

LO Hardware Revision (0x30). This is a float 32 value containing the local oscillator hardware revision.

SC Hardware Revision (0x34). This is a float 32 value containing the signal chain hardware revision.

Calibration Temperature (0x50). This is a float 32 value containing the temperature at which the device

was calibrated.

TCXO DAC Value (0x54). This is an unsigned integer containing the value for the reference DAC to adjust

the precision of the temperature-compensated crystal oscillator (TCXO).

YIG Calibration (0x64). Data is reserved for device use.

IF Filter Bandwidths (0x184, 0x188). These two float 32 data points contain the filter bandwidths of

IF3_FILTER0 and IF3_FILTER1, respectively. These are only available if the product contains non-standard

filters, different from those provided with the base product.

Gain / Temperature Coefficients (0x1A0). This is a 3x8 float matrix, where data is concatenated by rows,

that is, data is read back row by row. These coefficients, derived during calibration, are needed to

compute for gain as a function of temperature. They are 2nd order polynomial coefficients and are

measured over eight different frequencies. See “Gain Correction” section for more information on gain

SC5306B Operating & Programming Manual Rev 1.0 26

correction factors. Table 5 shows an example of the coefficient data and its format. Variables 𝑎1 and 𝑎2

are the first and second order coefficients.

Table 5. An example of gain-temperature coefficients data and format.

Frequency
(MHz)

50.0 250 500 1000 1500 2500 2800 3800

𝑎1 -0.04500 -0.04800 -0.05600 -0.05000 -0.04500 -0.04800 -0.05600 -0.05000

𝑎2 -0.00038 -0.00035 -0.00029 -0.00038 -0.00038 -0.00035 -0.00029 -0.00038

IF3_FILTER0 Response Calibration (0x204). This is a 3x51 float matrix, and data is read back row by row.

This set of data measures pass-band amplitude variation with respect to the center IF, and phase

deviation from linear phase of filter IF3_FILTER0. There are a total of 51 offset frequency points from the

center IF frequency measured inside the bandwidth of the filter. Table 6 is an example of the data and

format.

IF3_FILTER1 Response Calibration (0x46C). This is a 3x51 float matrix, and data is read back row by row.

This set of data measures pass-band amplitude variation with respect to the center IF, and phase

deviation from linear phase of filter IF3_FILTER1. There are a total of 51 offset frequency points from the

center IF frequency measured inside the bandwidth of the filter. Table 6 is an example of the data and

format.

Table 6. Relative IF gain and phase response calibration and format.

Frequency Offset (MHz) -12 -11.5 . . . -5 . . . -.5 0 .5 . . . 5 . . . 11.5 12

Gain Error -58.2 -20.6 . . . 0.9 . . . 0.2 0.0 0.3 . . . -0.2 . . . -12.8 -30.4

Phase Error(radians) .286 .138053012 0 .011 -.129 -.134

IF Invert Gain Correction (0x788). This is a float that contains the change in IF gain when the device is

switched to invert the IF spectrum. The default gain in the IF is the non-inverted mode gain.

IF3_Filter1 Gain Correction (0x790). This is a float that contains the change in IF gain when the device is

switched to the IF3_FILTER1 path. The default gain in the IF is the IF3_FILTER0 path gain.

IF Attenuator Calibration (0x798). This is a 3x30 float matrix, containing the calibrated attenuation

values of the three IF attenuators. Data is read in row by row. Each attenuator has 30 attenuation steps,

and each row correspond to one attenuator. The first row is the attenuation values of IF3_ATTEN2, the

second row contains the values or IF3_ATTEN1, and the third row contains the values of IF1_ATTEN.

Table 7 is an example of the data and its format. Since the IF bandwidth is typically less than 40 MHz

wide and centered at a fixed frequency, it is sufficient to perform the calibration at the center IF as

attenuation variation is insignificant over its range.

Table 7. An example of IF attenuation calibration.

IF3_Attenuator 2 0.973 1.927 2.948 3.912 28.630 29.634

IF3_Attenuator1 0.989 1.970 2.998 3.989 28.890 29.874

IF1_ Attenuator 0.995 2.028 3.038 4.023 28.868 29.854

SC5306B Operating & Programming Manual Rev 1.0 27

RF calibration (0x9F8). This is a 33x50 float matrix. Table 8 is an example of the data and format for the

RF calibration data. RF calibration contains data for preamplifier gain, gain with zero RF and IF

attenuation, and attenuation values of the RF attenuator for fifty frequency points that span the

operational frequency range of the SC5305A. Data is read in concatenation of rows. For example, all the

frequency values are read in first, then the preamplifier gain values, followed by the zero attenuation-

setting gain, etc. There are a total of 1650 values read that must be read from the EEPROM to form the

full set of calibration.

Table 8. Example of the RF calibration data and its format.

Frequency (MHz) 3 5 10 . 500 . . . 3875 3900

Preamp Gain 20.564 20.643 20.456 . 20.003 . . . 19.654 19.231

Gain 33.223 33.423 33.213 . 33.102 . . . 29.980 29.450

RF_ATTEN 1 dB 0.988 0.955 1.093 . 0.973 . . . 1.008 0.995

RF _ATTEN 2 dB 1.921 2.001 2.045 . 2.056 . . . 1.932 2.051

.

.

.

RF_ATTEN 30 dB 29.645 29.854 30.065 . 29.588 . . . 29.260 29.572

Frequency Correction

On power-up, The SC5306B automatically applies the calibration value to the on-board reference DAC

that controls the TCXO, which is the primary frequency reference of the device. The user may choose to

reprogram the DAC with the 16 bit code obtained from the EEPROM at starting address 0x54, or with

another value, by writing the REFERENCE_DAC register (0x17).

Gain Correction

The SC5306B has seven dynamic variables that affect its gain, namely, pre-amplifier state (on/off), IF

attenuator settings, RF attenuator setting, filter path, inversion gain, input frequency, and temperature.

Correction of gain needs to take into account five main factors. As noted in the “EEPROM Data Content”

section, the pre-amplifier gain, through gain (no attenuation, no pre-amplification), RF attenuation, and

gain-over-temperature variation are calibrated over the span of the SC5306B frequency range. These are

the frequency dependent parameters that are combined with the IF attenuation to make the total gain

calculation.

Let us start by writing the gain equation with no dependence on temperature or frequency, and with the

pre-amplifier turned on. We get the following equation:

𝐺𝑑𝑒𝑣 = 𝐺𝑝𝑟𝑒𝑎𝑚𝑝 + 𝐺 + ∆𝐺𝑓𝑖𝑙 + ∆𝐺𝑖𝑛𝑣 − 𝐴𝑟𝑓 − 𝐴𝑖𝑓 Equation 1

where 𝐺𝑑𝑒𝑣 is the total gain of the device, 𝐺𝑝𝑟𝑒𝑎𝑚𝑝 is the gain of the preamplifier, 𝐺 is the through gain,

𝐴𝑟𝑓 is the attenuation of the RF attenuator, ∆𝐺𝑓𝑖𝑙 is the gain change of IF3_FILTER1 path, ∆𝐺𝑖𝑛𝑣 is the

gain change in spectral inversion mode, and 𝐴𝑖𝑓 is the attenuation of the the IF attenuators. If the

preamplifier is off, no inversion, default filter path, and no attenuation applied then 𝐺𝑑𝑒𝑣 = 𝐺. Writing

SC5306B Operating & Programming Manual Rev 1.0 28

Equation 1 with dependency on temperature, we add on the temperature dependent gain factor ∆𝐺(𝑇)

and obtain the following:

where 𝑇 is the temperature of the device and 𝑇0 is the fixed temperature at which calibration was

performed. The “Reading Temperature Data” section provides information on how unsigned raw

temperature data is converted to Celsius, a floating point type. Taking the frequency dependence of the

measured parameters into consideration, Equation 2 may be rewritten as

Note that the IF attenuation values, 𝐴𝑖𝑓(𝑇0) do not need to be frequency dependent as discussed

earlier. Using the IF attenuator calibration is as simple as substituting the intended value with the

calibrated value. From Table 7, one would use 29.854 dB for an intended 30 dB attenuation. The other

two variables, ∆𝐺𝑓𝑖𝑙(𝑇0) and ∆𝐺𝑖𝑛𝑣(𝑇0), are also frequency independent as they are only referred to at

the center of the IF band, and their values are simply summed in the total gain equation. Only those

parameters that depend on frequency and/or temperature are treated below.

To obtain calibrated gain values from the parameters that are a function of frequency, interpolation is

required to provide the best estimated values. A natural cubic Spline interpolation is suggested

for 𝐺𝑝𝑟𝑒𝑎𝑚𝑝(𝑓, 𝑇0), 𝐺(𝑓, 𝑇0), and 𝐴𝑟𝑓(𝑓, 𝑇0). The important input parameters for a cubic spline

interpolation are the two arrays [𝑋] and [𝑌], and an arbitrary point 𝑥. The output of the interpolation is

some interpolated value 𝑦 based on the inputs. [𝑋] is the set of independent values, [𝑌] is the set of [𝑋]

dependent values, and 𝑥 is an arbitrary independent value to obtain the interpolated value 𝑦. For

example, Table 9 lists the input and output parameters to obtain the gain 𝐺(𝑓 = 1000 𝑀𝐻𝑧, 𝑇0).

Table 9. Parameters for a spline interpolation.

Frequency (MHz); [𝑋] 3 5 19 … … 950 1050 … 3875 3900

 Measured Gain; [𝑌] 33.223 33.423 33.213 … … 32.652 32.482 … 29.980 29.450

𝑓; 𝑥 1000

𝐺(𝑓, 𝑇0); 𝑦 32.453

From experience, having a large [X] and [Y] array of points does not necessarily provide the best

interpolated value due the nature of trying to fit a function over many points and over many octaves of

frequency. Better results are obtained from a set of localized calibrated points around the point of

interest. The function sc5306B_CalcGain uses six localized [X] points to compute the interpolated point.

Using localized points, the example on Table 9 is re-tabulated in Table 10. Similarly, frequency

dependent preamplifier gain and RF attenuation may be derived.

𝐺𝑑𝑒𝑣(𝑇) = 𝐺𝑝𝑟𝑒𝑎𝑚𝑝(𝑇0) + 𝐺(𝑇0)+∆𝐺𝑓𝑖𝑙(𝑇0) + ∆𝐺𝑖𝑛𝑣(𝑇0) − 𝐴𝑟𝑓(𝑇0) − 𝐴𝑖𝑓(𝑇0

+ ∆𝐺(𝑇)

Equation 2

𝐺𝑑𝑒𝑣(𝑓, 𝑇) = 𝐺𝑝𝑟𝑒𝑎𝑚𝑝(𝑓, 𝑇0) + 𝐺(𝑓, 𝑇0) − 𝐴𝑟𝑓(𝑓, 𝑇0) + ∆𝐺(𝑓, 𝑇)+∆𝐺𝑓𝑖𝑙(𝑇0)

+ ∆𝐺𝑖𝑛𝑣(𝑇0) − 𝐴𝑖𝑓(𝑇0)

Equation 3

SC5306B Operating & Programming Manual Rev 1.0 29

Table 10. Localized parameters for a spline interpolation.

Frequency (MHz); [𝑋] 850 900 950 1050 1100 1150

Gain; [𝑌] 32.681 32.673 32.652 32.482 32.419 32.418

𝑓; 𝑥 1000

𝐺(𝑓, 𝑇0); 𝑦 32.532

To find the change in gain with respect to change in temperature involves a couple of steps; first

determine the array values of [∆𝐺(𝑓𝑖, 𝑇)], where 𝑓𝑖 is the frequency point at which a measurement was

made, and then as a second step, use interpolation to determine the ∆𝐺(𝑓, 𝑇) at some frequency 𝑓.

Again, natural cubic spline interpolation is recommended in the second step. Let us outline a method to

determine ∆𝐺(𝑓𝑖, 𝑇) at frequency 𝑓𝑖; there are a total of eight frequency points for this calibration.

The calibration values retrieved from the EEPROM are second order polynomial coefficients fitted to

measured data. Writing the general form of the gain function using coefficients, we have:

𝐺(𝑓𝑖, 𝑇) = 𝑎0(𝑓𝑖) + 𝑎1(𝑓𝑖)𝑇 + 𝑎2(𝑓𝑖)𝑇2 Equation 4

Here 𝑎𝑗(𝑓𝑖) is the 𝑗𝑡ℎ order coefficient measured some frequency 𝑓𝑖. The gain deviation at temperature

𝑇 from the gain measured at the calibration temperature 𝑇0 can be written as

Δ𝐺(𝑓𝑖, 𝑇) = 𝐺(𝑓𝑖, 𝑇) − 𝐺(𝑓𝑖, 𝑇0)

= 𝑎1(𝑓𝑖)[𝑇 − 𝑇0] + 𝑎2(𝑓𝑖)[𝑇2 − 𝑇0
2]

Equation 5

Using Equation 5 and the temperature coefficients of Table 5, we obtain the following:

Table 11. Calculated gain changes at the measured frequency points.

Frequency (MHz) (𝑓𝑖) 50.0 250 500 1000 1500 2500 2800 3800

Δ𝐺(𝑓𝑖, 𝑇 = 45𝑂) dB -0.340 -0.343 -0.351 -0.348 -0.354 -0.351 -0.355 -0.357

After determining the set of gain deviations at some temperature 𝑇, we apply spline interpolation to the

set of ∆𝐺(𝑓𝑖, 𝑇) values to obtain ∆𝐺(𝑓, 𝑇), change in gain with respect to both temperature and

frequency. Using Table 11 and the convention developed here, the spline parameters are [𝑋] = [𝑓𝑖],

[𝑌] = [∆𝐺(𝑓𝑖, 𝑇)], 𝑥 = 𝑓, and 𝑦 = ∆𝐺(𝑓, 𝑇).

IF Response Correction

The gain correction procedure outlined above only applies to a signal that is centered in the 70 MHz IF

band. The device’s Fine-Tune mode (1 Hz) is able to place any RF signal at the center of the IF, so for

narrow bandwidth signals (typically less than a MHz), applying the center IF gain correction and

assuming no deviation from linear phase is sufficient. However, for a large bandwidth signal that spans

several MHz, it is important to apply gain and phase correction to the offset frequencies; those that are

offset from the center IF. Although SignalCore performs calibration of the amplitude and phase over the

bandwidth of the IF filters (available on the device calibration EEPROM), it is recommended that the

user perform in-situ system equalization for digital broadband applications for improved performance.

SC5306B Operating & Programming Manual Rev 1.0 30

Measured IF gain and phase error response is available for both filter paths; the user simply needs to

properly select the path of interest. The measurement is made using a vector network analyzer in the

frequency domain, covered by fifty-one evenly spaced frequency points. The amplitude (gain) error

values are measured with respect to the center frequency and are given in decibels, while the phase

error values are in radians. The phase errors are deviations from linear phase. Each set of calibrated

points consists of a 3x51 floating point array (see Table 6 as an example). There are several ways to

apply the frequency domain calibration:

1. Determine a fitted polynomial function for the amplitude error (gain) and multiply this function with

the uncorrected amplitude spectrum. Add the two values if dealing in decibels. Additionally,

determine a fitted polynomial function for the phase error and add values derived from this function

with the uncorrected phase. To derive, let 𝑋(𝑒𝑖𝜔) be the measured uncorrected value, 𝐸(𝑒𝑗𝜔) be

the fitted polynomial to the calibrated error values, and 𝑌(𝑒𝑗𝜔) be the corrected measured value.

Also let 𝐴𝑟𝑔[∙] denote the principle value of the phase of the above terms, and we can relate all the

terms as

𝑌(𝑒𝑗𝜔) = 𝐸(𝑒𝑗𝜔)𝑋(𝑒𝑗𝜔)

|𝑌(𝑒𝑗𝜔)|𝑒𝑗𝐴𝑟𝑔[𝑌(𝑒𝑗𝜔) = |𝐸(𝑒𝑗𝜔)||𝑋(𝑒𝑗𝜔)|𝑒𝑗(𝐴𝑟𝑔[𝑌(𝑒𝑗𝜔)]+𝐴𝑟𝑔[𝑌(𝑒𝑗𝜔)])

From the above equation, we see that the magnitude terms are multiplied and the phase terms

added. In the discrete sense (digitized) for every frequency value, 𝜔𝑖, we apply the above equation

to correct for the non-ideality of the IF filter.

2. The other method finds the magnitude and error points through interpolation methods such as

Spline, then multiplying the error magnitude with the uncorrected magnitude and adding the error

and uncorrected phases. This is similar to method 1, but instead of using a fitted function to obtain

the error values, interpolation is used. Interpolation is generally a slower process. This is the method

implemented in the library function sc5306B_CalcIfResponseCorrection.

SC5306B Operating & Programming Manual Rev 1.0 31

S O F T W A R E A P I L I B R A R Y F U N C T I O N S

SignalCore’s philosophy is to provide products to our customers whose lower hardware functions are

easily accessible. For experienced users who wish to use direct, low-level control of frequency and gain

settings, having the ability to access the registers directly is a necessity. However, others may wish for

simpler product integration using higher level function libraries and not having to program device

registers directly. The functions listed below comprise the function set of the dynamic-linked library

(Windows operating systems) and shared library (Linux operating system) versions of the SC5306B API.

The LabVIEW palette library differs slightly due to the unique requirements of the LabVIEW

programming environment (e.g., LabVIEW already provides standard math functions for curve fitting

with spline interpolation).

• sc5306B_ListResources

• sc5306B_OpenDevice

• sc5306B_CloseDevice

• sc5306B_RegWrite

• sc5306B_RegRead

• sc5306B_InitDevice

• sc5306B_SetStandby

• sc5306B_SetFrequency

• sc5306B_SetPreamp

• sc5306B_SetSignalChain

• sc5306B_SetSynthesizerMode

• sc5306B_SetIfFilterPath

• sc5306B_SetReferenceClock

• sc5306B_SetReferenceDac

• sc5306B_SetIfInversion

• sc5306B_WriteUserEeprom

• sc5306B_SetSignalPhase

• sc5306B_SetSpurMode

• sc5306B_GetDeviceStatus

• sc5306B_GetTemperature

• sc5306B_ReadCalEeprom

• sc5306B_ReadUserEeprom

• sc5306B_ReadUserEepromBulk

• sc5306B_GetRawCalData

• sc5306B_GetCalData

• sc5306B_CalcAutoAttenuation

• sc5306B_CalcGain

• sc5306B_CalcIfResponseCorrection

• sc5306B_ConvertRawCalData

• sc5306B_ConvertRawTempData

• sc5306B_Spline

• sc5306B_SplineInterp

SC5306B Operating & Programming Manual Rev 1.0 32

Each of these functions is described in more detail on the following pages. To program in C/C++,

SignalCore defines the following constants and types which are contained in the C header file,

sc5306B.h. These constants and types are useful not only as an include file for developing applications

using the SC5306B libraries, but also for writing device drivers independent of those provided by

SignalCore.

Constants Definitions

/* 2-D parameters for storing calibration data */
#define RFCALPARAM 33 // rows of caldata
#define RFCALFREQ 50 // frequency points
#define IFATTENUATOR 3 // total number of IF attenuators
#define IFATTENCALVALUE 30 // attenuation steps 1-30 dB
#define IFRESPONSEPARAM 3 // frequency, amplitude, phase
#define IFRESPONSEFREQ 51 // frequency points over the bandwidth
#define TEMPCOPARAM 3 // frequency, coeff(1), coeff(2)
#define TEMPCOFREQ 8 // frequency points

/* Attenuator assignment */
#define IF3ATTENUATOR2 0
#define IF3ATTENUATOR1 1
#define RFATTENUATOR 2
#define IF1ATTENUATOR 3

#define CALEEPROMSIZE 15168
#define USEREEPROMSIZE 16384

/* Tune mode parameters */
#define FASTTUNEENABLE 1
#define DISABLEDFINEMODE 0 // 1 MHz tuning steps, PLL implementation
#define PLLFINEMONDE 1 // 25 KHz tuning steps, PLL implementation
#define DDSFINEMODE 2 // 1 Hz tuning steps, DDS implementation

/* Error set */
#define SUCCESS 0
#define DEVICEERROR -1
#define TRANSFERERERROR -2
#define INPUTNULL -3
#define COMMERROR -4
#define INPUTNOTALLOC -5
#define EEPROMOUTBOUNDS -6
#define INVALIDARGUMENT -7
#define INPUTOUTRANGE -8
#define NOREFWHENLOCK -9
#define NORESOURCEFOUND -10
#define INVALIDCOMMAND -11

SC5306B Operating & Programming Manual Rev 1.0 33

Type Definitions

typedef unsigned char bool;

typedef struct deviceAttribute_t

{

 unsigned int productSerialNumber;

 unsigned int rfModuleSerialNumber;

 float firmwareRevision;

 float loHardwareRevision;

 float scHardwareRevision;

 unsigned int *calDate; //size of 4 year,month,day,hour

 unsigned int *manDate; //size of 4 year,month,day,hour

} deviceAttribute_t;

typedef struct calibrationData_t

{

 float **rfCal; // RF gain calibration

 float **ifAttenCal; // IF attenuators calibration

 float **ifFil0ResponseCal; // IF filter 0 response calibration

 float **ifFil1ResponseCal; // IF filter 1 response calibration

 float **tempCoeff; // temperature coefficients

 float rfCalTemp; // temperature T0 at which calibration was done

 float ifFilter1GainError; // Gain error when switched to filter 1 path

 float ifFilter0Bw; // filter 0 BW in MHz

 float ifFilter1Bw; // filter 1 BW in MHz

 float invertGainError; // gain error when spectral inversion enabled

 unsigned int tcxoDac; // The TCXO dac value at T0

} calibrationData_t;

typedef struct attenuator_t

{

 unsigned int if3Atten2Value;

 unsigned int if3Atten1Value;

 unsigned int rfAttenValue;

 unsigned int if1AttenValue;

} attenuator_t;

typedef struct deviceStatus_t

{

 bool tcxoPllLock;

 bool vcxoPllLock;

 bool lo1Pll3Lock;

 bool lo2PllLock;

SC5306B Operating & Programming Manual Rev 1.0 34

 bool lo3PllLock;

 bool lo1Pll1Lock;

 bool lo1Pll2Lock;

 bool extRefDetected;

 bool refClkOutEnable;

 bool extRefLockEnable;

 bool ifBandSelect;

 bool preampEnable;

 bool standbyEnable;

bool pxiClkEnable;

} deviceStatus_t;

typedef struct ifResponseCorrect_t

{

 float ampCorrect;

 float phaseCorrect;

} ifResponseCorrect_t;

typedef struct

{

 libusb_device_handle *handle;

 libusb_context *ctx; //need to carry the session context for libusb_exit

} deviceHandle; //using deviceHandle rather deviceHandle_t for back compatibility

SC5306B Operating & Programming Manual Rev 1.0 35

P R O G R A M M I N G T H E U S B I N T E R F A C E

The functions listed below are found in the sc5306B.dll dynamic linked library for WindowsTM operating

systems or in the libsc5306B.so shared library for the Linux operating system. These functions are also

provided in the LabVIEW library under the directory \Win\API\LabVIEW\SignalCore\SC5306B.

Function: sc5306B_SearchDevices

Definition: int sc5306B_SearchDevices(char **SerialNumberList)

Return: int number of devices found

Output: char **SerialNumberList (pointer list to device serial numbers)

Description: sc5306B_SearchDevices searches for SignalCore SC5306B devices connected to the host

computer and returns an array containing their resource IDs. The user can use this

information to open the device(s). See sc5306B_OpenDevice function for information

on how to open a device.

Function: sc5306B_OpenDevice

Definition: int sc5306B_OpenDevice(char *visaResource, deviceHandle *devHandle)

Return: Error code

Output: char *visaResource (char pointer to the resource ID)

 unsigned int deviceHandle (device handle return)

Description: sc5306B_OpenDevice opens the device and turns on the front panel “active” LED if

successful. This function returns a handle to the device for other function calls.

Function: sc5306B_CloseDevice

Definition: int sc5306B_CloseDevice(deviceHandle *devHandle)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the device to be closed)

Description: sc5306B_CloseDevice closes the device associated with the device handle and turns off

the “active” LED of the front panel if it is successful.

SC5306B Operating & Programming Manual Rev 1.0 36

Example: To exercise the functions that open and close the device:

Function: sc5306B_RegWrite

Definition: int sc5306B_RegWrite(deviceHandle *devHandle, unsigned char commandByte,

 unsigned int instructWord)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned char commandByte (the address byte of the register to write to)

 unsigned int instructWord (the data for the register)

Description: sc5306B_RegWrite writes the instructWord data to the register specified by the

commandByte. See the register map in Error! Reference source not found. Error! Re

ference source not found.for more information. This function should rarely be used.

Example: To set the RF attenuator value to 10 dB:

int status = sc5306B_RegWrite(devHandle, 0x11, 0x020A);

// Declaring
char ** serialNumberList;
deviceHandle devHandle;
int devicesFound;
int i, status;
// Allocate memory for possible 100 devices with 10 char description
char ** serialNumberList = (char**)malloc(sizeof(char*)* 100);
for(i = 0; i< 100; i++) serialNumberList [i] = (char*)malloc(sizeof(char)*10);

devicesFound = sc5306B_SearchDevices(serialNumberList);
 if(devicesFound == 0)
 {

for(i = 0; i< 100;i++) free(serialNumberList [i]);
 free(serialNumberList);
 return 1;
 }
printf("There are %d SignalCore SC5306B devices found. \n", devicesFound);

for (i = 0;i<devicesFound;i++) printf("%d. %s \n",i + 1,serialNumberList[i]);

devHandle = sc5306B_OpenDevice(serialNumberList[0]); // get handle to the first
listed device

// Free memory
for(i = 0; i< 100;i++) free(serialNumberList [i]);
free(serialNumberList);
//
// Do something with the device
//
//Close the device
status = sc5306B_CloseDevice(devHandle);

SC5306B Operating & Programming Manual Rev 1.0 37

Function: sc5306B_RegRead

Definition: int sc5306B_RegRead(deviceHandle *devHandle, unsigned char commandByte,

 unsigned int instructWord, unsigned int *receivedWord)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned char commandByte (the address byte of the register to write to)

 unsigned int instructWord (the data for the register)

 unsigned int *receivedWord (data to be received)

Description: sc5306B_RegRead reads the data requested by the instructWord data to the register

specified by the commandByte. See the register map in Table 2 for more information.

Example: To read the status of the device:

Function: sc5306B_InitDevice

Definition: int sc5306B_InitDevice(deviceHandle *devHandle, bool Mode)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 bool Mode (0 or 1)

Description: sc5306B_InitDevice initializes the device to power up state if Mode = 0, or reprograms

all device components again to the current programmed state if Mode = 1.

Function: sc5306B_SetStandby

Definition: int sc5306B_SetStandby(deviceHandle *devHandle, bool standbyStatus)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 bool standbyStatus (set to true (1) to set device in standby mode)

Description: sc5306B_SetStandby puts the device in standby mode where the power to the analog

circuits is disabled, conserving power.

unsigned int deviceStatus;

int status = sc5306B_RegRead(devHandle,0x18,0x01,&deviceStatus);

SC5306B Operating & Programming Manual Rev 1.0 38

Function: sc5306B_SetFrequency

Definition: int sc5306B_SetFrequency(deviceHandle *devHandle, unsigned int frequency)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int frequency (frequency in Hz)

Description: sc5306B_SetFrequency sets the RF frequency.

Function: sc5306B_SetAttenuator

Definition: int sc5306B_SetAttenuator(deviceHandle *devHandle, unsigned int attenValue,

 unsigned int attenuator)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int attenValue (the value assigned to the attenuator)

 unsigned int attenuator (the designated attenuator, see header file)

Description: sc5306B_SetAttenuator sets the value of the designated attenuator.

Function: sc5306B_SetPreamp

Definition: int sc5306B_SetPreamp(deviceHandle *devHandle, bool preampStatus)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 bool preampStatus (turn on/off the preamp)

Description: sc5306B_SetPreamp enables or disables the RF preamplifier.

Function: sc5306B_SetSignalChain

Definition: int sc5306B_SetSignalChain(deviceHandle *devHandle, attenuator_t *atten,

 bool preampStatus)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 attenuator_t atten (values to the attenuators contained in type)

 bool preampStatus (enable/disable the preamp)

Description: sc5306B_SetSignalChain sets all the attenuators and the preamp state. This simplifies

the programming flow when used with sc_5306B_CalcAutoAttenuation, which returns

the attenuator_t structure.

SC5306B Operating & Programming Manual Rev 1.0 39

Example: Define attenuator_t atten and use it in the function:

Function: sc5306B_SetSynthesizerMode

Definition: int sc5306B_SetSynthesizerMode(deviceHandle *devHandle,

 bool fastTuneEnable,

 unsigned int fineTuneMode)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 bool fastTuneEnable (enable/disable faster frequency stepping)

 unsigned int fineTuneMode (selection of 1 MHz, 25 kHz, 1 Hz step resolution)

Description: sc5306B_SetSynthesizerMode enables/disables fast tuning, and sets the step resolution

of the downconverter.

Function: sc5306B_SetIfFilterPath

Definition: int sc5306B_SetIfFilterPath(deviceHandle *devHandle, bool ifFilterPath)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 bool ifFilterPath (selection of IF filter 0 or filter 1)

Description: sc5306B_SetIfFilterPath selects the IF filter.

attenuator_t *atten;
bool preamp = 0;
atten = (attenuator_t*)malloc(sizeof(attenuator_t)); //casting may not be
necessary
// set for rfLevel = 0 dBm, mixerLevel = -20, ifLevel = 0 dBm, Pream off
atten->if3Atten2Value = 8;
atten->if3Atten1Value = 2;
atten->rfAttenValue = 20;
atten->if1AttenValue = 0;

int status = sc5306B_SetSignalChain(deviceHandle, atten, preamp);
free(atten);

SC5306B Operating & Programming Manual Rev 1.0 40

Function: sc5306B_SetReferenceClock

Definition: int sc5306B_SetReferenceClock(deviceHandle *devHandle, bool lockExtEnable,

 bool RefOutEnable, bool Clk100Enable)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 bool lockExtEnable (enables phase locking to an external source)

 bool RefOutEnable (enables the clock to driven out the REF OUT port)

 bool Clk100Enable (changes REF OUT between 10MHz to 100 MHz)

Description: sc5306B_SetReferenceClock configures the reference clock behavior of the device.

Function: sc5306B_SetReferenceDac

Definition: int sc5306B_SetReferenceDac(deviceHandle *devHandle, unsigned int dacValue)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int dacValue (16-bit value for the reference DAC)

Description: sc5306B_SetReferenceDac set the value of the DAC that tunes the internal reference

TXCO. The user may choose to override the value stored in memory to improve

frequency accuracy.

Function: sc5306B_SetIfInversion

Definition: int sc5306B_SetIfInversion(deviceHandle *devHandle, bool ifInvertEnable)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 bool ifInvertEnable (enable spectral inversion)

Description: sc5306B_SetIfInversion enables the down-converted signal to be spectrally inverted

with respect the RF input. This may be beneficial for some applications.

Function: sc5306B_SetSignalPhase

Definition: int sc5306B_SetSignalPhase(deviceHandle *devHandle, float phase)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 float phase (phase in degrees, 0-360 deg, 0.1 resolution)

Description: sc5306B_SetSignalPhase increases the phase of the signal by the amount specified.

SC5306B Operating & Programming Manual Rev 1.0 41

Function: sc5306B_SetSpurMode

Definition: int sc5306B_SetSpurMode(deviceHandle *devHandle, bool phase)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 bool phase (modes 0 or 1)

Description: sc5306B_SetSpurMode when set to 1 changes the LO frequency scheme internally to

move a leakage spur at center band to an offset of 1.25 MHz. Under normal mode 0, this

spur is typically < -120 dBm and by turning on mode 1 improves this in most devices.

Function: sc5306B_WriteUserEeprom

Definition: int sc5306B_WriteUserEeprom(deviceHandle *devHandle,

 unsigned int memAdd, unsigned char byteData)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int memAdd (memory address to write to)

 unsigned char byteData (byte to be written to the address)

Description: sc5306B_WriteUserEeprom writes one byte of data to the memory address specified.

Function: sc5306B_GetDeviceStatus

Definition: int sc5306B_GetDeviceStatus(deviceHandle *devHandle,

 deviceStatus_t *deviceStatus)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

Output: deviceStatus_t *deviceStatus (outputs the status of the device such as PLL lock)

Description: sc5306B_GetDeviceStatus retrieves the status of the device such as LO phase-lock

status and current device settings.

Example: Code showing how to use this function:

deviceStatus_t *devStatus;
devStatus = (deviceStatus_t*)malloc(sizeof(deviceStatus_t));

int status = sc5306B_GetDeviceStatus(devHandle, devStatus);

if(devStatus->vcxoPllLock)
printf("The 100 MHz is phase-locked \n");
else
printf("The 100 MHz is not phase-locked \n");

free(deviceStatus);

SC5306B Operating & Programming Manual Rev 1.0 42

Function: sc5306B_GetTemperature

Definition: int sc5306B_GetTemperature(deviceHandle *devHandle,

 float *temperature)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

Output: float *temperature (temperature in degrees C)

Description: sc5306B_GetTemperature retrieves the internal temperature of the device.

Function: sc5306B_ReadCalEeprom

Definition: int sc5306B_ReadCalEeprom(deviceHandle *devHandle, unsigned int memAdd,

 unsigned char *byteData)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int memAdd (EEPROM memory address)

Output: unsigned char *byteData (the read byte data)

Description: sc5306B_ReadCalEeprom reads back a byte from the memory address of the calibration

EEPROM.

Function: sc5306B_ReadUserEeprom

Definition: int sc5306B_ReadUserEeprom(deviceHandle *devHandle,

 unsigned int memAdd, unsigned char *byteData)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int memAdd (EEPROM memory address)

Output: unsigned char *byteData (the read byte data)

Description: sc5306B_ReadUserEeprom reads back a byte from the memory address of the user

EEPROM.

SC5306B Operating & Programming Manual Rev 1.0 43

Function: sc5306B_ReadUserEepromBulk

Definition: int sc5306B_ReadUserEepromBulk(deviceHandle *devHandle,

 unsigned int startMemAdd,

 unsigned char *byteDataArray)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

 unsigned int memAdd (EEPROM start memory address)

Output: unsigned char *byteData (the read 64 bytes of data)

Description: sc5306B_ReadUserEepromBulk reads back 64 bytes beginning at the start memory

address of the user EEPROM.

Example: Code to read back 512 bytes of data starting at address 1024 into eepromData:

Function: sc5306B_GetRawCalData

Definition: int sc5306B_GetRawCalData(deviceHandle *devHandle,

 unsigned char *rawCalDataArray)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

Output: unsigned char *rawCalDataArray (the entire calibration EEPROM contents)

Description: sc5306B_GetRawCalData reads the entire calibration EEPROM into rawCalDataArray.

The array must be allocated for at least 15168 bytes.

Example: See code block example below for using sc5306B_ConvertRawCalData.

unsigned char eepromData = (unsigned char*)malloc(512);
unsigned char *bufferIn = (unsigned char*)malloc(64);
int i = 0;
int bufferCount = 0;
unsigned int add = 1024;

while(bufferCount < 8){
 int status = sc5306B_ReadUserEepromBulk(devHandle, add+bufferCount*64,
bufferIn);
 for (i = 0; i < 64; i++) eepromData[i + bufferCount*64] = bufferIn[i];

 bufferCount ++;
}

free(bufferIn);

SC5306B Operating & Programming Manual Rev 1.0 44

Function: sc5306B_GetCalData

Definition: int sc5306B_GetCalData(deviceHandle *devHandle,

 deviceAttribute_t *deviceAttributes,

 calibrationData_t *calData)

Return: The status of the function

Input: deviceHandle *devHandle (handle to the opened device)

Output: deviceAttribute_t *deviceAttributes (device attributes)

 calibrationData_t *calData (structured calibration data)

Description: sc5306B_GetCalData returns the device attributes such as serial number, calibration

date, and also structured calibration data used for gain calculation and correction.

Example: See code block example for sc5306B_ConvertRawCalData.

Function: sc5306B_ConvertRawCalData

Definition: int sc5306B_ConvertRawCalData(unsigned char *rawCalData,

 deviceAttribute_t *deviceAttributes,

 calibrationData_t *calData)

Input: unsigned char *rawCalData (entire cal EEPROM data in raw byte format)

Output: calibrationData_t *calibrationData (current calibration data)

 deviceAttribute_t *deviceAttributes (device attributes)

Description: sc5306B_ConvertRawCalData organizes/decodes the entire 15168 bytes of raw

calibration data read from the EEPROM and returns two data formats -

deviceAttribute_t and calibrationData_t. The array rawCalData must contain valid

calibration data, obtained by reading the EEPROM, and rawCalData, calData and

deviceAttributes must have memory allocated.

SC5306B Operating & Programming Manual Rev 1.0 45

Example: Allocating memory for the input and output parameters in C, and calling the function.

Similarly, allocated memory must be de-allocated when no longer used or when the

program quits.

//Declaring
calibrationData_t* calData;
deviceAttribute_t* devAttr;
unsigned char *rawCal;

//allocate memory for raw calibration
rawCal = (unsigned char*)malloc(sizeof(char)*CALEEPROMSIZE);

// Allocate memory; the user may use malloc() instead of calloc()
devAttr->calDate = (unsigned int*)calloc(4,sizeof(unsigned int));
devAttr->manDate = (unsigned int*)calloc(4,sizeof(unsigned int));

calData->rfCal = (float**)calloc(RFCALPARAM,sizeof(float*));
for(i = 0;i<RFCALPARAM;i++)
 calData->rfCal[i] = (float*)calloc(RFCALFREQ,sizeof(float));

calData->ifAttenCal = (float**)calloc(IFATTENUATOR,sizeof(float*));
for(i = 0;i<IFATTENUATOR;i++)
 calData->ifAttenCal[i] = (float*)calloc(IFATTENCALVALUE,sizeof(float));

calData->ifFil0ResponseCal = (float**)calloc(IFRESPONSEPARAM,sizeof(float*));
for(i = 0;i<IFRESPONSEPARAM;i++)
 calData->ifFil0ResponseCal[i] =
(float*)calloc(IFRESPONSEFREQ,sizeof(float));

calData->ifFil1ResponseCal = (float**)calloc(IFRESPONSEPARAM,sizeof(float*));
for(i = 0;i<IFRESPONSEPARAM;i++)
 calData->ifFil1ResponseCal[i] =
(float*)calloc(IFRESPONSEFREQ,sizeof(float));

calData->tempCoeff = (float**)calloc(TEMPCOPARAM,sizeof(float*));
for(i = 0;i<TEMPCOPARAM;i++)
 calData->tempCoeff[i] = (float*)calloc(TEMPCOFREQ,sizeof(float));

//read in raw calibration
int status = sc5306B_GetRawCal(devHandle, rawCal);
//Calling the function to structure the calibration data
status = sc5306B_convertRawCalData(rawCal, devAttr, calData);

//alternatively instead of calling the above 2 functions
status = sc5306B_GetCalData(devHandle, devAttr, calData);

SC5306B Operating & Programming Manual Rev 1.0 46

Function: sc5306B_CalcAutoAttenuation

Definition: int sc5306B_CalcAutoAttenuation(unsigned int frequency, float inputRfLevel,

 float inputMixerLevel, bool preampEnable,

 float nominalIfOutLevel, bool if3Filter1Enable,

 float temperature, calibrationData_t *calData,

 attenuator_t *attenuator);

Input: unsigned int frequency (input RF frequency in Hz)

 float inputRfLevel (input RF level in dB)

 float inputMixerLevel (input mixer level in dB)

 bool preampEnable (preamplifier enabled)

 float nominalIfOutLevel (nominal IF out level in dB)

 bool if3Filter1Enable (Enable Filter 1 path in IF3)

 float temperature (current device temperature)

 calibrationData_t * calData (structured calibration data for the device)

Output: attenuator_t *attenuator (attenuation settings for RF, IF1, and final

 IF3 attenuators)

Description: sc5306B_CalcAutoAttenuation returns the set of attenuation settings for all the

attenuators that will configure the SC5306B for best dynamic range operation based on

user input parameters such as frequency, mixer level, etc. The values are calculated to

maintain a good balance between the signal-to-noise dynamic range and the linearity

dynamic range. The input parameters are based on those of traditional spectrum

analyzers. The SC5306B downconverter is designed for best balanced dynamic range

with -20 dBm power at the input mixer and 0 dBm nominal power at the IF output port.

Each attenuator must have memory allocated before calling this function.

sc5306B_ConvertRawCalData must be called or valid structure calibration data must be

entered before calling this function.

SC5306B Operating & Programming Manual Rev 1.0 47

Example: Code showing how to properly use this function:

Function: sc5306B_CalcGain

Definition: int sc5306B_CalcGain(unsigned int frequency, bool preampEnable,

 bool ifInvertEnable, bool if3Fil1Enable,

 attenuator_t *atten, float temperature,

 calibrationData_t *calData, float *conversionGain);

Input: unsigned int frequency (input RF frequency in Hz)

 bool preampEnable (preamplifier enabled)

 bool ifInvertEnable (enable IF spectral inversion)

 attenuator_t *atten (attenuation settings)

 float temperature (temperature value of the device in degrees Celsius)

 calibrationData_t *calData (calibration data for the device)

Output: float *conversionGain (calculated calibrate conversion gain for current settings)

Description: sc5306B_CalcGain calculates the calibrated gain based on the current user settings.

//Declaring
attenuator_t *atten;
float temp;

unsigned int rfFreq = 1000000000; // 1.0 GHz
float rfLevel = 0; // expecting a 0 dBm input signal
float mixerLevel = -20; //set the mixer level requirement
bool preamp = 0; // since input level is 0 dB, no need for a preamp
float ifLevel = 0; // to obtain a level closest to 0 dBm at the IF
bool filterPath = 0; // use the default filter path in the IF

//call a function to return the device temperature
status = sc5306B_GetTemperature(devHandle, &temp);

//Calling the function to get a suggested atten based on the input parameters
int status = sc5306B_CalcAutoAttenuation(rfFreq, rfLevel, mixerLevel, preamp,
ifLevel, filterPath, temp, atten);

SC5306B Operating & Programming Manual Rev 1.0 48

Function: sc5306B_CalcIfResponseCorrection

Definition: int sc5306B_CalcIfResponseCorrection(float *offsetFrequencies,

 unsigned int nPoints,

 bool ifFil1PathEnable,

 calibrationData_t *calData,

 ifResponseCorrect_t *correctedIfResponse)

Input: float *offsetFrequencies (floating point number 1-D array)

 unsigned int nPoints (number of points in the 1-D array)

 bool ifFil1PathEnable (IF filter 1 path enable)

 calibrationData_t *calibrationData (calibration data for the device)

Output: float *correctedIfResponse

Description: sc5306B_CalculateIfResponseCorrection determines the IF correct response for the set

of IF offset frequencies. These offset frequencies may be the frequency components of

an FFT of the acquired data being offset from its center frequency. To obtain the offset

frequencies, one can simply subtract the frequencies from the IF center frequency. For

example, if a digitizer sampling at 100 MHz is used to digitize the 70 MHz IF signal with

bandwidth of 3 MHz, the center of the digitized signal is 30 MHz +/- 1.5 MHz. After

performing digital spectral inversion and performing an FFT, take the subset of

frequency components from 28.5MHz to 31.5 MHz and subtract 30 MHz to obtain the

offset frequencies of -1.5 MHz to 1.5 MHz. Use this set of offset frequencies to compute

the gain and phase corrections to be applied to the original signal spectrum at 28.5 MHz

to 31.5 MHz. This algorithm may not be sufficient for computation of broadband signals

due to the lack of computation speed and correction accuracy. The calibration stored

does not account for in-band phase and amplitude variations due to temperature and

these variations may cause sufficient errors, especially in broadband digital signals. The

user should apply in situ equalization to correct for the in-band amplitude and phase

errors.

Function: sc5306B_ConvertRawTempData

Definition: int sc5306B_ConvertRawTempData(unsigned int rawTempData,

 float *temperature)

Input: unsigned int rawTempData (16-bit rawTempData stored in a 32-bit unsigned int)

Output: float *temperature (temperature value of the device in degrees Celsius)

Description: sc5306B_ConvertRawTempData converts the rawTempData variable into a floating

point number.

SC5306B Operating & Programming Manual Rev 1.0 49

Function: sc5306B_Spline

Definition: int sc5306B_Spline(double *xArray, double *yArray, int nPoints,

 double firstBoundary , double secondBoundary,

 double *yInterpolant)

Input: double *xArray (the set of independent values)

 double *yArray (the set of x-dependent function values; size is the same as xArray)

 int nPoints (the number of points in xArray)

 double firstBoundary (the second derivative of the first point in the set)

 double secondBoundary (the second derivative of the last point in the set)

Output: double *yInterpolant (the return set of interpolants)

Description: Returns the spline interpolants of the input parameters.

Function: sc5306B_SplineInterp

Definition: int sc5306B_SplineInterp(double *xArray, double *yArray, double *yInterpolant,

 double nPoints, double x, double *interpolatedYValue)

Input: double *xArray (the set of independent values)

 double *yArray (the set of x-dependent function values; size is the same as xArray)

 double *yInterpolant (the returned interpolant from spline())

 int nPoints (the numbers of points in xArray)

 double x (the value at which interpolation is performed)

Output: double *interpolatedYValue (the corresponding interpolated value at x)

Description: Returns the spline interpolated value.

P R O G R A M M I N G T H E R S 2 3 2 I N T E R F A C E

Function Definitions and Usage of the RS232 API

The driver functions to access the device through the RS232 port are written upon NI-VISA, so NI-VISA

must be installed to use them. There is no separate installer (.inf file) requirement as NI-VISA contains

the RS232 protocol. The driver functions are provided as a DLL which can be called from C/C++, BASIC,

LabVIEW, etc. The LabVIEW functions provided are simply wrappers of this DLL.

The functions are near identical to the USB set with the exception that sc5306B_SearchDevices is not

provided, and the sc5306B_OpenDevice returns the device handle differently; see the rs232 header file

for more information. Also, refer to the USB function descriptions for details on function usage. The

device handle is defined as an unsigned integer, and is passed into the function as a pointer in the RS232

implementation, which differs from the USB version where the device handle is a return type of

deviceHandle. Furthermore, the baud rate must be passed into the function at this point. The device

supports 2 baud rates: 57600 and 115200. The baud rate for the device must be set at power up or on

hardware reset of the device through pin 23 of the communication I/O connector. This pin is defaulted

to logic high, which set the baud rate at 57600. Pulling this pin to logic low will set the rate at 115200.

Function: sc5306B_OpenDevice

Definition: int *sc5306B_OpenDevice(char *visaResource, unsigned int baudrate,

unsigned int *deviceHandle)

Return: int (status)

Output: char *visaResource (resource name such as “COM1”)

 unsigned int baudrate (sets the host to the baudrate of the device)

Output: unsigned int* deviceHandle (deviceHandle)

Description: sc5306B_OpenDevice opens the device and turns on the front panel “active” LED if

successful. This function returns a handle to the device for other function calls.

Addressing the RS232 Registers Directly

When the user uses the supplied API, data sent and returned is appropriately handled and the user gets

the proper end result. However, if the user chooses to read and write to the RS232 registers directly, the

following information, as well as the register descriptions in the USB section, are helpful and needed.

The device with the RS232 option has a standard interface buffered by an RS232 transceiver, so that it

may interface directly with many host devices such as a desktop computer. The interface is provide

SC5306B Operating & Programming Manual Rev 1.0 2

through the communication I/O connector; refer to Figure 1 for position and pin-out information. The

device communication control is provided in Table 12.

Table 12. RS232 communication settings

Baud rate Rate of transmission. Pin 12 of the Digital IO connector selects the rate. By

default if the pin is pulled high or open, the rate is set 56700 at power up or

upon HW reset. When the pin is pulled low (jumper to pin 11) or grounding it,

the rate is set to 115200.

Data bits The number of bits in the data is fixed at 8.

Parity Parity is 0 (zero)

Stop bits 1 stop bit

Flow control 0 or none

Writing to the device via RS232

It is important that all necessary bytes associated with any one register is fully sent, in other words, if a

register requires a total of 4 bytes (address plus data) then all 4 bytes must be sent even though the last

byte may be a null. The device upon receiving the first register addressing byte will wait for all the data

bytes associated with it before acting on the register instruction. Failure to complete the register

transmission will cause the device to behave erratically or hang. Information for the configuration or

write-to registers is given in Table 1.

When the device receives all the information for a register and finishes performing its instruction, it will

return a byte back to the host. Querying this return byte ensures that the prior configuration command

has been successfully executed and the device is ready for the next register command. It is important to

clear the incoming RX buffer on the host by querying it or force flushing it to avoid in-coming data

corruption of querying registers. The return byte value is 1 on success and 0 on an unsuccessful

configuration.

Reading from the device via RS232

To query information from the device, the query registers are addressed and data is returned. The

returned RS232 data length for querying registers is always 2 bytes, however valid returned data

depends on the queried register; Table 2 contains the query register information. As with the

configuration registers, it is important that the data byte(s) associated with the query registers are sent

even if they are nulls. Data is returned MSB first. The returned valid data length is also detailed below in

Table 13. Note that temperature is returned as a digital code so please refer to the Reading

Temperature Data section for information to convert it to floating number in degree Celsius

Table 13 Valid returned data

REGISTER BYTE 1 BYTE 0

SC5306B Operating & Programming Manual Rev 1.0 3

GET_DEVICE_STATUS (0x18) valid valid
GET_TEMPERATURE (0x19) valid valid
READ_CAL_EEPROM (0x20) non-valid valid
READ_USER_EEPROM (0x22) non-valid valid

P R O G R A M M I N G T H E S C 5 3 0 6 A S E R I A L

P E R I P H E R A L I N T E R F A C E

The SPI Communication Connector

The SC5306A-USB/SPI uses a 9-pin micro-D subminiature connector for SPI communication with the

device through a 4-wire serial peripheral interface. The pinout of this male connector, viewed from the

RF connector side as shown below, is listed in Table 14. In addition to the 4-wire SPI lines, is the

SerialReady line that indicates whether the device is ready to accept data or not. Additional lines for

device reset and remote status indicators are available on a separate auxiliary header and its description

maybe found the SC5306A Operating and Programming manual under the Auxiliary Connections

Table 14 SPI pin definitions

Pin Number SPI Function Description

25 CS Chip Select (active low, output from master)

26 CLK Serial Clock (output from master)

27 MISO Master Input - Slave Output (output from slave)

28 GND Signal Ground

29 MOSI Master Output Slave Input (output from master)

30 SRDY Indicates on high when SPI is ready

The SC5306A SPI Architecture

The SC5306A SPI interface is implemented using 8-bit length physical buffers for both the input and

output, hence they need to be read and cleared before consecutive byte data can be transferred to and

from them. Therefore, a time delay is required between consecutive bytes of a command written to or

SC5306B Operating & Programming Manual Rev 1.0 4

read from the SC5306A by the host. The chip-select pin (CS) must be asserted low before data is clocked

in or out of the product. CS must be asserted for the entire duration of the command.

Commands to the device vary between two to five bytes of data. Once a full command has been

received, the SC5306A will proceed to process the command and de-assert low the SerialReady bit. The

status of this bit can be read by the host by invoking the SerialReady register (0x1F). The SerialReady bit

can also be monitored on pin 1 of the SPI interface connector. While SerialReady is de-asserted low, the

SC5306A will ignore any incoming commands, and they are lost. Only the command received after

SerialReady is re-asserted high is then processed. It is important that the user monitors the SerialReady

bit and performs transfers only when it is asserted high to avoid miscommunication with the product.

Figure 6 shows the command transfer for obtaining the SerialReady bit, which is returned in bit [0] of

the returned data byte 0. The device will return the same number of bytes back to the host via the MISO

line as the number of bytes it receives via the MOSI line. Data returned typically do not carry any valid

information unless specifically requested for valid data in a preceding query command; see the section

on Reading Requested Data via the SPI Bus.

Figure 6 Querying the device for SerialReady status

SPI Clock Rates and Modes

Figure 7 shows a single 3-byte SPI command transfer initiated by the host, as the SC5306A is always in

slave mode. The largest data length is 32 bits following the 8 bit command register, so parceling the 32

bits into bytes, the largest number of data bytes transferred is 4. The most significant byte (MSB) of the

data is sent immediately after the register (address) byte. The CS pin must be asserted low for a

minimum period of 1 𝜇𝑠 before data is clocked into the SC5306A. The clock rate may be as high as 1.2

MHz. However, if the externally generated SPI commands do not have sufficient signal integrity due to

cabling problems (impedance, crosstalk, etc.), the rate should be lowered. It is recommended that the

clock rate not exceed 1.2 MHz to ensure proper serial operation. As mentioned above, the SPI

architecture limits the byte rate because after every byte transfer, the input and output SPI buffers need

to be cleared and loaded respectively by the SC5306A SPI engine. The time required by the SC5306A to

perform this task is indicated in Figure 7 by 𝑇𝐵, which is the time interval between the end of one byte

transfer and the beginning of another within a command. The recommended time delay for 𝑇𝐵 is 5𝜇𝑠 or

0x1F

CLK

DATA IN

CS

DATA OUT

0x00

Invalid 0x01

SC5306B Operating & Programming Manual Rev 1.0 5

greater.

Figure 7. Single SPI command transfer consisting of 3 bytes

After each command is received successfully, it is processed by the SC5306A. The time required to

process a command is dependent on the command itself. Measured times for command completions

are typically between 40 𝜇𝑠 to 350 𝜇𝑠 after reception. It is required that the user poll the status of the

SerialReady bit before sending another command. The minimum wait time between successive polls of

the SerialReady register is 10 𝜇𝑠. However, for large frequency step sizes where the frequency takes

several milliseconds to settle to it new value, it is important to allow for frequency settling before

sending in a new frequency configuration command.

There are two selectable modes of SPI operation available on the device. Leaving pin 23 of the

communication I/O connector open or pulled high (3.3V), mode 1 is enabled at power-up or upon device

reset. Jumping the pin to ground will enable mode 0 at power-up or upon reset. Once the mode is set,

which typically take a second after power-up, logic on pin 23 will no longer affect the device. In the

default mode (mode 1) serial data in and out of the device are clocked on the falling edge of the SPI

clock while the CS line is asserted active low. In mode 0, both data in and out are clocked on the rising

edge of the SPI clock. Both modes require that the most significant bit (msb) is written first. The

recommended clock rate for mode 0 is between 150 kHz and 1.2 MHz, and for mode 1 is between 100

Hz and 1.2 MHz.

Figure 8 SPI mode 1

TS TBTC

8 Bit Command/ Reg. Address Byte 1 (MSB) Byte 0 (LSB)

TS : Time between CS assertion and first clock cycle >= 5 uS

TC : Clock period = 1 uS typical (Clock rate depends on signal integrity from host)

TB : Duration between byte transfer >= 5 uS

CLK

DATA

CS

MSB

CS

MISO

MOSI

CLK

MSB

LSB

LSB

SC5306B Operating & Programming Manual Rev 1.0 6

Figure 9 SPI mode 0

MSB

CS

MISO

MOSI

CLK

MSB

LSB

LSB

SC5306B Operating & Programming Manual Rev 1.0 7

Writing Configuration Data via the SPI Bus

SPI commands for the SC5306A vary between 2 bytes to 5 bytes. The most significant byte (MSB) is the

command register address as noted in the register map of Table 15. The subsequent bytes contain

configuration data. As data from the host is being transferred to the SC5306A via the MOSI line, data

present on its SPI output buffer is simultaneously transferred back via the MISO line. The data present

on the SPI output buffer is data that had been requested by a preceding Query command. See the

section Reading Requested Data via the SPI Bus for more information on retrieving data from the device.

Figure 10 shows the contents of a series of single 3-byte SPI commands written to the SC5306A.

Consecutive transfers should only be made when SerialReady is asserted high or after a pause period of

500𝜇𝑠 or more.

Table 15 Configuration registers

Register (Address)

Data

Bytes Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default

INITIALIZE (0x01) [7:0] Open Open Open Open Open Open Open Mode 0x00

SET_SYSTEM_ACTIVE (0x02) [7:0] Open Open Open Open Open Open Open
Enable

SYS LED
0x00

POWER_SHUT_DOWN (0x05) [7:0] Open Open Open Open Open Open Open Enable 0x00

[7:0] 0x00

[15:8] 0x00

[23:16] 0x00

[31:24] 0x00

[7:0] 0x00

[15:8] 0x00

RF_PREAMPLIFIER_SETTING (0x12) [7:0] Open Open Open Open Open Open Open Enable 0x00

RF_MODE_SETTING (0x13) [7:0] Open Open Open Open Open

Fast

Tune

Enable

0x00

IF_FILTER_SELECT (0x15) [7:0] Open Open Open Open Open Open Open Band 0x00

REFERENCE_SETTING (0x16) [7:0] Open Open Open Open Reserv
100 MHz

Out Sel

Ref Out

Enable

Lock

Enable
0x00

[7:0] 0x00

[15:8] 0x00

IF_INVERT_SETTING (0x1D) [7:0] Open Open Open Open Open Open Open Enable

[7:0]

[15:8]

[23:16]

[7:0] 0x00

[15:8] Open Open 0x00

 Frequency Word [23:16]

Frequency Word [7:0]

Frequency Word [15:8]

Frequency Word [31:24]

RF_FREQUENCY (0x10)

Attenuator Value

Attenuator
ATTENUATOR_SETTING (0x11)

Fine Tune

REFERENCE_DAC (0x17)
DAC word [7:0]

DAC word [15:8]

Units Value [13:8]
PHASE_SETTING (0x32)

 EEPROM DATA [7:0]

WRITE_USER_EEPROM (0x23) EEPROM Address [7:0]

EEPROM Address [15:8]

Tenths ValueUnits Value[7:4]

SC5306B Operating & Programming Manual Rev 1.0 8

Figure 10 Transfers of 3 byte commands

Reading Requested Data via the SPI Bus

Data is simultaneously written and read back during an SPI transfer cycle; however the returned data

may be invalid. To read back valid data a query command to request for data must be issued first,

followed by reading the SPI output buffer, a total of 2 SPI transfer cycles. The query registers are listed in

Table 16, and namely the FETCH_TEMPERATURE, FETCH_DEVICE_STATUS, FETCH_CAL_EEPROM, and

FETCH_USER_EEPROM registers.

Table 16: Query Registers

Register (Address)

Data

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default

FETCH_DEVICE_STATUS

(0x18) [7:0] Open Open Open Open Open Open Open Open 0x00

FETCH_TEMPERATURE (0x19)
[7:0] Open Open Open Open Open Open Open Open 0x00

[7:0] 0x00

[15:8] 0x00

SERIAL_READY (0x1F) [7:0] Open Open Open Open Open Open Open Open 0x00

[7:0] 0x00

[15:8] 0x00

[7:0] 0x00

[15:8] 0x00
FETCH_USER_EEPROM (0x22)

EEPROM Address [7:0]

EEPROM Address [15:8]

FETCH_CAL_EEPROM (0x20)

Data Byte 0

Data Byte 1
SPI_OUTPUT_BUFFER (0x1A)

EEPROM Address [7:0]

EEPROM Address [15:8]

After issuing a request command, the device gathers the information and places the results in the

SPI_OUTPUT_BUFFER register (0x1A), which can be read back by querying it. The SPI_OUTPUT_BUFFER

must contain the register value (0x1A) in the first byte, followed by 2 empty bytes to return the

requested data. Of the 3 bytes returned, only the last 2 bytes contain valid data. An example to request

for temperature from the device is shown in the sequence of steps of Figure 11.

Querying for temperature data in the SPI_OUTPUT_BUFFER should be sent after polling the

SERIAL_READY register to ensure that the prior request command has been fully executed. In figure 9,

polling the SERIAL_READY register is not shown explicitly. If the delay between consecutive commands is

Reg

CLK

DATA IN

CS

DATA OUT

0xXX

0xXX0x00

0xXX

0xXX

Reg 0xXX

0xXX0x00

0xXX

0xXX

Very first transfer consecutive transfers

SC5306B Operating & Programming Manual Rev 1.0 9

longer than the preceding command processing time, then querying of the SERIAL_READY register may

not be required.

In the above example, valid data is present in the last 2 bytes; byte 1 and byte 0. Table 17 shows the

valid data bytes associated with the querying register.

Table 17 Valid returned data bytes

Register (Address) Reg Code Byte 1 Byte 0

GET TEMPERATURE 0x19 Valid Valid

GET DEVICE STATUS 0x18 Valid Valid

READ USER EEPROM 0x22 Valid

READ CAL EEPROM 0x20 Valid

0x000x19

InvalidInvalid

CLK

MOSI

CS

MISO

0x00 0x00

Data Byte 1Invalid Data Byte 0

0x1A

Request for temperature Query SPI_OUTPUT_BUFFER for data

Figure 11 Reading the device temperature

SC5306B Operating & Programming Manual Rev 1.0 10

C A L I B R A T I O N & M A I N T E N A N C E

The SC5306B is factory calibrated and ships with a certificate of calibration. SignalCore strongly

recommends that the SC5306B be returned for factory calibration every 12 months or whenever a

problem is suspected. The specific calibration interval is left to the end user and is dependent upon the

accuracy required for a particular application.

SC5306B calibration data is stored in the RF module (metal housing). Therefore, changing or replacing

interface adapters will not affect unit calibration. However, SignalCore maintains a calibration data

archive of all units shipped. Archiving this data is important should a customer need to reload calibration

data into their device for any reason. SignalCore also uses the archived data for comparative analysis

when units are returned for calibration.

Should any customer need to reload calibration data for their SC5306B, SignalCore offers free support

through support@signalcore.com. SignalCore will provide a copy of the archived calibration data along

with instructions on how to upload the file to the SC5306B.

The SC5306B requires no scheduled preventative maintenance other than maintaining clean, reliable

connections to the device as mentioned in the “Getting Started” section of this manual. There are no

serviceable parts or hardware adjustments that can be made by the end user.

mailto:support@signalcore.com

SC5306B Operating & Programming Manual Rev 1.0 11

R E V I S I O N N O T E S .

Rev. 1.0 Original document

Rev. 1.1 Address Removed

Rev. 1.2 Corrected torque range

