The SC5312A is a single slot, 3U, PXI Express, 400 MHz to 6 GHz direct IQ demodulator, downconverting RF directly to analog In-phase (I) and Quadrature (Q) IF or IQ baseband components. The frequency range of the baseband/IF output is DC to 160 MHz. The module can also be operated as a single stage downconverter. The DC-coupled differential IQ pair may be fed to any dual channel digitizer for analog to digital data conversion. The local oscillator (LO) is supplied by any external signal source capable of tuning over the range of the SC5312A (like the SignalCore SC5505A dual channel signal source). The SC5312A can daisy-chain the LO signal, allowing a single source module to drive multiple direct IQ downconverters for coherent reception.

The SC5312A has an auxiliary RF input port that may be connected to the auxiliary RF output port of SignalCore IQ modulators like the SC5412A to aid with system digital equalization that corrects for IQ impairments associated with the device(s). The user can access internal correction DACs, applying compensation offsets to improve the demodulator linearity, IP2, DC offsets, and common mode output voltage of the differential ports. The input compression-to-noise dynamic range is typically 150 dB with noise figure less than 10 dB. IMD is less than -70 dBc for a -20 dBm input signal.

The SC5312A is designed to be paired with the SC5505A signal source to form a complete RF direct IQ demodulator/downconverter solution. It can also be configured with the SC5412A direct IQ upconverter as the core of an RF signal transceiver. The SC5312A’s high dynamic range, along with its compact size, low power consumption, and modular flexibility make it attractive for system integration into applications such as wireless device testing, software defined radio research, point-to-point radio, multichannel coherent systems, and other academic and military programs.

Product Features

- RF range 400 MHz to 6 GHz
- DC to 160 MHz baseband
- Noise floor < -165 dBm/Hz
- Input IP3 > 15 dBm
- DC offset calibration
- Adjustable gain > 60 dB
SC5312A SPECIFICATIONS

TECHNICAL SPECIFICATIONS (at 25°C ambient, sine waveform)

SPECTRAL SPECIFICATIONS
RF input frequency range 400 MHz to 6 GHz
IF output frequency DC to 160 MHz

AMPLITUDE SPECIFICATIONS
Input RF range -160 dBm to +20 dBm
Max input (with 20 dB RF attenuation) +27 dBm
RF attenuation range 0 to 60 dB
RF attenuation resolution 1 dB
Gain range -30 dB to +30 dB typical
Input P1dB compression +5 dBm
IMD3 (two tones, 1 MHz apart)
(RF amplifier/attenuator adjusted for 1V peak baseband)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>RF=-10 dBm</th>
<th>RF=-20 dBm</th>
<th>RF=-30 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 MHz</td>
<td>-75 dBc</td>
<td>-80 dBc</td>
<td>-85 dBc</td>
</tr>
<tr>
<td>1800 MHz</td>
<td>-70 dBc</td>
<td>-75 dBc</td>
<td>-80 dBc</td>
</tr>
<tr>
<td>5800 MHz</td>
<td>-60 dBc</td>
<td>-65 dBc</td>
<td>-67 dBc</td>
</tr>
</tbody>
</table>

Input IP2 ... > 60 dBc
Input noise density
(adjusted for 1V peak baseband)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>RF = -10</th>
<th>RF = -30</th>
<th>Max gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 MHz</td>
<td>-148</td>
<td>-161</td>
<td>-166</td>
</tr>
<tr>
<td>1800 MHz</td>
<td>-148</td>
<td>-161</td>
<td>-165</td>
</tr>
<tr>
<td>5800 MHz</td>
<td>-140</td>
<td>-160</td>
<td>-160</td>
</tr>
</tbody>
</table>

LO leakage at RF port < -70 dBm
LO level ... -3 dBm to +3 dBm

QUADRATURE SPECIFICATIONS
Gain mismatch (user equalization not applied)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 MHz</td>
<td>< 0.2 dB</td>
</tr>
<tr>
<td>1800 MHz</td>
<td>< 0.2 dB</td>
</tr>
<tr>
<td>3600 MHz</td>
<td>< 0.3 dB</td>
</tr>
<tr>
<td>5800 MHz</td>
<td>< 0.3 dB</td>
</tr>
</tbody>
</table>

Phase error (user equalization not applied)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 MHz</td>
<td>< 0.6 deg</td>
</tr>
<tr>
<td>1800 MHz</td>
<td>< 0.8 deg</td>
</tr>
<tr>
<td>3600 MHz</td>
<td>< 2.2 deg</td>
</tr>
<tr>
<td>5800 MHz</td>
<td>< 2.0 deg</td>
</tr>
</tbody>
</table>

TERMINAL SPECIFICATIONS
RF and LO input terminals
Impedance .. 50 Ω
Connector type SMA female
Coupling ... AC
Baseband / IF output terminals
Impedance (single ended) 50 Ω
Connector type MCX female
Coupling ... DC
Amplitude ... 2 V max
Communication interface PXI Express
Power consumption +12 V @ 0.5 A
Weight .. 1 lb
Dimensions (W x H x D, max envelope) 0.8”x 5.1” x 7.2”
Warranty ... 3 years parts and labor on defects in materials or workmanship

ADDITIONAL FEATURES
• Auxiliary RF port for calibration use
• Switchable LO output
• DAC control for linearity optimization, DC voltage offset, and common differential output voltage
• Switchable RF amplifier to improve SNR for low-level RF signals
• User EEPROM for storage of calibration constants and settings
• Onboard temperature sensor to monitor temperature variation

ORDER INFORMATION
7100029-01 SC5312A, 6 GHz Direct IQ Downconverter for PXI Express
Specifications are subject to change without notice. For the most recent product specifications, please visit www.signalcore.com.

(1) All units are factory calibrated and calibration is stored in onboard EEPROMs. The user must apply the calibration correction to the IF signal for output level accuracy to be valid
(2) Only with sine-tone generation. Accuracies are limited by the step attenuation resolution
(3) Shown in the table are two different settings; one set for improved SNR, the other set for improved 3rd-order IMD

www.signalcore.com • +1.512.501.6000 • sales@signalcore.com
© SignalCore, Incorporated. “SignalCore”, “signalcore.com”, and the phrase “preserving signal integrity” are trademarks of SignalCore, Incorporated.